用logx,logy,logz表示下列各式(1)log(xyz)(2)logxy^2/z(3)logxy^3/根号z(4)log根号x/y^2z

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:54:28
用logx,logy,logz表示下列各式(1)log(xyz)(2)logxy^2/z(3)logxy^3/根号z(4)log根号x/y^2z
xRN0ȍݍ8 |@fHDJLE0t`)q S~ۉPĆ޻ww8uI}/wꚳ9̙WA /et4H@41AŚO_$گ HH3*[Рa MFAI 5Tri2seŠ@1R+LQ0CXS-m?Ʋ*UL"J̯=m,Lv X2cD BH w+qdC7KC'QԿAp1e "]uCK#b l{n볘

用logx,logy,logz表示下列各式(1)log(xyz)(2)logxy^2/z(3)logxy^3/根号z(4)log根号x/y^2z
用logx,logy,logz表示下列各式
(1)log(xyz)
(2)logxy^2/z
(3)logxy^3/根号z
(4)log根号x/y^2z

用logx,logy,logz表示下列各式(1)log(xyz)(2)logxy^2/z(3)logxy^3/根号z(4)log根号x/y^2z
(1)log(xyz)=logx+logy+logz
(2)logxy^2/z=logxy^2-logz=2(logx+logy)-logz
(3)logxy^3/根号z=logxy^3-log根号z=3logxy-1/2logz=3logx+3logy-1/2logz
(4)log根号x/y^2z=log根号x-logy^2z=1/2logx-2zlogy
公式
当a>0且a≠1时,M>0,N>0,那么:   
(1)log(a)(MN)=log(a)(M)+log(a)(N);   
(2)log(a)(M/N)=log(a)(M)-log(a)(N);   
(3)log(a)(M^n)=nlog(a)(M) (n∈R

(1) logx+logy+logz
(2) 2(logx+logy)-logz
(3) 3(logx+logy)-(1/2)logz
(4) (1/2)logx-2logy-logz