设函数f(x)=tan^2x-2a*tanx+1 (π/4≤x<π/2),求函数f(x)的最小值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 03:49:38
设函数f(x)=tan^2x-2a*tanx+1 (π/4≤x<π/2),求函数f(x)的最小值.
x){nϦnHӨд-I̋35J* 47<\R~ HS&Zixi="}_`gC}6}ȨGц:ڏ:i=혉B[ gmgQwrΥ @r3l:. &qQ2d_\g+

设函数f(x)=tan^2x-2a*tanx+1 (π/4≤x<π/2),求函数f(x)的最小值.
设函数f(x)=tan^2x-2a*tanx+1 (π/4≤x<π/2),求函数f(x)的最小值.

设函数f(x)=tan^2x-2a*tanx+1 (π/4≤x<π/2),求函数f(x)的最小值.
π/4≤x<π/2时,tanx∈[1,+∞)
则f(x)=tan^2x-2a*tanx+1=(tanx-a)^2+1-a^2
当a≥1时,f(x)min=1-a^2,此时tanx=a,x=arctana
当a