已知对任意θ都有y=cosθ2-2msinθ-2m-2恒小于0求实数m的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:35:46
已知对任意θ都有y=cosθ2-2msinθ-2m-2恒小于0求实数m的取值范围
xSKN@J/p;!;Kjd# 319Dn;+_v9lK*3ig_FvVo gvVXW~d%5ko/mXk֫착ڕ-Z:y)jA$'@'2iksώ:ti]BZ!I[WFp=(9."8&UltZy~*܉Uj4!5<"I$0$2vBB^]{ 5fuMpvkx[e[ƶfӣFdEStE1ae㲢(*kCҢ4A^7"m3DQL}3nh됚~hDf J6 Ǎ-Lzyl'eV#

已知对任意θ都有y=cosθ2-2msinθ-2m-2恒小于0求实数m的取值范围
已知对任意θ都有y=cosθ2-2msinθ-2m-2恒小于0
求实数m的取值范围

已知对任意θ都有y=cosθ2-2msinθ-2m-2恒小于0求实数m的取值范围
cosθ2是cosθ的平方吧
这样解:
cosθ2=1-sinθ2
y=-sinθ2-2msinθ-2m-1
设sinθ=t
F(x)=-t2-2mt-2m-1 (-1≤t≤1)
对称轴-m
1.-m<-1,即m>1时
F(-1)<0,
解得:恒成立
2. -1≤-m≤1.即 -1≤m≤1时
F(-m)<0
解得: 1-√2<m≤1
3.-m>1时,即m<-1时
F(1)<0
解得:m>-1/2,不成立
所以m∈(1-√2,+∞)
比较仓促,自己验算一下

cosθ2是cosθ的平方
cosθ2=1-sinθ2
y=-sinθ2-2msinθ-2m-1
设sinθ=t
F(x)=-t2-2mt-2m-1 (-1≤t≤1)
对称轴-m
1.-m<-1,即m>1时
F(-1)<0,
解得:恒成立
2. -1≤-m≤1.即 -1≤m≤1时
F(-m)<0

全部展开

cosθ2是cosθ的平方
cosθ2=1-sinθ2
y=-sinθ2-2msinθ-2m-1
设sinθ=t
F(x)=-t2-2mt-2m-1 (-1≤t≤1)
对称轴-m
1.-m<-1,即m>1时
F(-1)<0,
解得:恒成立
2. -1≤-m≤1.即 -1≤m≤1时
F(-m)<0
解得: 1-√2<m≤1
3.-m>1时,即m<-1时
F(1)<0
解得:m>-1/2,不成立
所以m∈(1-√2,+∞)

收起

m∈(1-√2,+∞)

已知对任意θ都有y=cosθ2-2msinθ-2m-2恒小于0求实数m的取值范围 已知函数y=(cosθ)x^2-(4sinθ)x+6,对于任意实数x都有y>0,且θ是三角形的一个内角,求cosθ的取值范围 关于圆的方程 高二解析几何已知圆M:(x+cosθ)^2+(y-sinθ)^2=1,直线L:y=Kx.下列四个命题:(1) 对任意实数k与θ,直线L和圆M相切;(2)对任意实数k与θ,直线L和圆M有公共点;(3)对任意实数θ, 已知对任意角θ都有y=-sin^2θ-2msinθ-2m-1恒小于0,试求m的取值范围 已知函数y=x^2cos@-4xsin@+6对任意实数x恒有y>0且@是三角形一内角,求@的取值范围 若函数f(x)=3cos(wx+θ)对任意的x都有f(x)=f(2-x),则f(1)= 已知函数f(t)满足对任意实数x,y都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2 已知函数满足对任意xy属于R都有f(x+y)=f(x)*f(y)-f(x)-f(y)+2成立,且x2,证明x y=(cosα)x²-(2sinα)x+6,任意x∈R,都有y>0,求cosα取值范围? 对任意实数都有f(x+y)=f(x)+f(y)+2xy,已知f(1)=2,求f(-3),简洁,谢 已知函数对任意x,y∈R,都有f(xy)=f(x)+f(y),且f(2)=3,求f(8)的值 已知函数对任意x,y∈R,都有f(xy)=f(x)+f(y),且f(2)=3,求f(8)的值. 函数y=(cosθ)x²-4(sinθ)x+6对任意实数x都有y>0,且θ是三角形的内角,则θ的取值范围是 已知对任意角θ都有y=-sin^2θ-2msinθ-2m-1恒小于0,试求实数m的取值范围. 已知对任意角θ都有y=sinθ^2-2msinθ-2m-1恒小于0,试求实数m的取值范围 已知函数y=cosθ·x2-4sinθ·x+6,对任意x恒有y>0,且θ为三角形的一个内角,求θ的取值范围. 已知函数y=cosθ·x2-4sinθ·x+6,对任意x恒有y>0,且θ为三角形的一个内角,求θ的取值范围. 高一数学函数已知函数f(x)=2sinθcosx-2sinθ已知函数f(x)=2sinθcosx-2sinθ,θ∈(0,3∏/2),且tanθ=3,若对任意x∈R,都有f(x)≥0成立,求cosθ的值