求下列式子的极值 (1) 5x-3x^2 (2) 2x^2+x-3 (3) 1/(x^2+x+1) (4) x^2+4/x^2 感激不尽
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:28:43
求下列式子的极值 (1) 5x-3x^2 (2) 2x^2+x-3 (3) 1/(x^2+x+1) (4) x^2+4/x^2 感激不尽
求下列式子的极值 (1) 5x-3x^2 (2) 2x^2+x-3 (3) 1/(x^2+x+1) (4) x^2+4/x^2 感激不尽
求下列式子的极值 (1) 5x-3x^2 (2) 2x^2+x-3 (3) 1/(x^2+x+1) (4) x^2+4/x^2 感激不尽
(1)
-3x^2 + 5x = -3 (x-5/6)^2 + 25/12
当x= 5/6时有极大值25/12
(2)
2x^2 + x - 3 = 2(x+1/4)^2 - 25/8
当x=-1/4时有极小值-25/8
(3)
因为x^2 + x + 1 = (x+1/2)^2 + 3/4
所以1/(x^2 + x + 1)在x=-1/2时有极大值4/3
(4)
x^2 + 4/x^2 >= 2*x*(2/x) = 4
当x^2 = 4/x^2,也即x=正负根号2时,有极小值4
5x-3x^2=-3(x^2-5x/3)=-3(x-5/6)^2+25/12<=25/12
2x^2+x-3=2(x^2+x/2+1/16)-3-1/8=2(x+1/4)^2-25/8>=-25/8
1/(x^2+x+1)=1/[(x+1/2)^2+3/4]<=4/3
x^2+4/x^2>=2x*2/x=4
(1) 5x-3x^2 =-3(x-5/6)^2 +25/12 ≤ 25/12
最大值:25/12
(2) 2x^2+x-3=2(x+1/4)^2-1/8-3=2(x+1/4)^2-25/8 ≥ -25/8
最小值:-25/8
(3) 1/(x^2+x+1) =1/[(x+1/2)^2-1/4+1]=1/[(x+1/2)^2+3/4] ≤ 1/(3/4)= 4/...
全部展开
(1) 5x-3x^2 =-3(x-5/6)^2 +25/12 ≤ 25/12
最大值:25/12
(2) 2x^2+x-3=2(x+1/4)^2-1/8-3=2(x+1/4)^2-25/8 ≥ -25/8
最小值:-25/8
(3) 1/(x^2+x+1) =1/[(x+1/2)^2-1/4+1]=1/[(x+1/2)^2+3/4] ≤ 1/(3/4)= 4/3
分母最小值3/4,最大值+∞
∴分式最小值0,最大值4/3
(4) x^2+4/x^2 =(x-2/x)^2+2*x*2/x=(x-2/x)^2+4≥4
最小值4
收起