求积分∫dx/1+sinx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 06:32:30
求积分∫dx/1+sinx
x){O;uN7.̫I*!_`gOדKJ4*4lJbO;f|} C#kM$X8(D'KTGbD(S Q 5)h+8E"Pwł% s+S+i

求积分∫dx/1+sinx
求积分∫dx/1+sinx

求积分∫dx/1+sinx
令tan(x/2) = t
则sinx = 2t/(1+t²)
x = 2arctant,dx = 2dt/(1+t²)
∫dx/(1+sinx)
=∫2dt/(1+t)²
=-2/(1+t) + C
=-2/[1+tan(x/2)] + C

woyeyao