求函数y=sinx乘cosx+sinx+cosx的最大值,x∈[0,π/2] 用均值不等式如何解?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:31:45
求函数y=sinx乘cosx+sinx+cosx的最大值,x∈[0,π/2] 用均值不等式如何解?
求函数y=sinx乘cosx+sinx+cosx的最大值,x∈[0,π/2] 用均值不等式如何解?
求函数y=sinx乘cosx+sinx+cosx的最大值,x∈[0,π/2] 用均值不等式如何解?
y=sinx乘cosx+sinx+cosx的最大值,x∈[0,π/2]
y=sinx*cosx+sinx+cosx+1-1=sinx(cosx+1)+(cosx+1)-1=(sinx+1)(cosx+1)-1
看到两整式相乘的形式求最值,想到
用均值定理:一正(定义域决定了),二定,三相等
即y≤((sinx+1)^2+(cosx+1)^2)/2-1
≤sinx+cosx+1/2
所以...当且仅当sinx+1=cosx+1,即sinx=cosx=根2/2时,y的最大值为(根2+1/2)
y=sinx乘cosx+sinx+cosx的最大值,x∈[0,π/2]
y=sinx*cosx+sinx+cosx+1-1=sinx(cosx+1)+(cosx+1)-1=(sinx+1)(cosx+1)-1
看到两整式相乘的形式求最值,想到
用均值定理:一正(定义域决定了),二定,三相等
即y≤((sinx+1)^2+(cosx+1)^2)/2-1
...
全部展开
y=sinx乘cosx+sinx+cosx的最大值,x∈[0,π/2]
y=sinx*cosx+sinx+cosx+1-1=sinx(cosx+1)+(cosx+1)-1=(sinx+1)(cosx+1)-1
看到两整式相乘的形式求最值,想到
用均值定理:一正(定义域决定了),二定,三相等
即y≤((sinx+1)^2+(cosx+1)^2)/2-1
≤sinx+cosx+1/2
所以...当且仅当sinx+1=cosx+1,即sinx=cosx=根2/2时,y的最大值为(根2+1/2)
收起
只用均值不等式:sinx乘cosx<=【(sinx+cosx)/2】^2 ,做不出来答案的
还是要用到换元法,令 t=sinx+cosx =根号2 sin(x+π/4)∈【1,根号2】,
且 sinx乘cosx=(t^2-1)/2
y=sinx乘cosx+sinx+cosx =(t^2-1)/2 + t =【(t+1)^2-2】/2
当t=根号2时,y取最大...
全部展开
只用均值不等式:sinx乘cosx<=【(sinx+cosx)/2】^2 ,做不出来答案的
还是要用到换元法,令 t=sinx+cosx =根号2 sin(x+π/4)∈【1,根号2】,
且 sinx乘cosx=(t^2-1)/2
y=sinx乘cosx+sinx+cosx =(t^2-1)/2 + t =【(t+1)^2-2】/2
当t=根号2时,y取最大值为根号2+1/2
收起