设函数f(x)的定义域为D,若存在非零常数L,使得对于任意x⊆M(M⊆D)都有f(x+L)≥f(x),则称f(x)为M上的高调函数,l是高调值.若函数f(x)=x^2+2x为(-∞,1]上的高调函数,则高调值L的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:31:40
设函数f(x)的定义域为D,若存在非零常数L,使得对于任意x⊆M(M⊆D)都有f(x+L)≥f(x),则称f(x)为M上的高调函数,l是高调值.若函数f(x)=x^2+2x为(-∞,1]上的高调函数,则高调值L的
xNP_`8  n\ItbnXDܕHŠF-.ibxMf3-vmsoa'PQ%Tno=)[ Fd?A'ۇ4NQUeKaa]P)07QшuY!a;y njժco P ތd$2Q!Y6y&}Bx KDVXCn5ïi[h`Mch*-͌#7טEox$аSpY!tYz?K kM2jIQE6+JH~n?K&^C$*'!B4G R跦'O |==ŷ}E[@z*Gky2ʋe-}bO&PMjUAM+8~4?1ʪ\Go

设函数f(x)的定义域为D,若存在非零常数L,使得对于任意x⊆M(M⊆D)都有f(x+L)≥f(x),则称f(x)为M上的高调函数,l是高调值.若函数f(x)=x^2+2x为(-∞,1]上的高调函数,则高调值L的
设函数f(x)的定义域为D,若存在非零常数L,使得对于任意x⊆M(M⊆D)都有f(x+L)≥f(x),则称f(x)为M上的高调函数,l是高调值.若函数f(x)=x^2+2x为(-∞,1]上的高调函数,则高调值L的取值范围是
(x+L)^2+2(x+L)≥x^2+2x
即L^2+2Lx+2L≥0在(-∞,1]恒成立
l<0
L^+4L≥0这两个步骤怎么出来的?

设函数f(x)的定义域为D,若存在非零常数L,使得对于任意x⊆M(M⊆D)都有f(x+L)≥f(x),则称f(x)为M上的高调函数,l是高调值.若函数f(x)=x^2+2x为(-∞,1]上的高调函数,则高调值L的
我就接下去做,因为L^2+2LX+2L≥0在(-∞,1]上恒成立
令左边=g(x)=2Lx+(L^2+2L),这是一次函数,是一条直线,
要在(-∞,1]上始终在x轴的上方,那么必须2L

设函数f(x)的定义域为R,若存在常数m>0,使|f(x)| 设函数f(x)的定义域为R,若存在常数m>0,使|f(x)| 设f(x)定义域为D,若满足; (1)f(x)在D 内是单调函数;(2)存在[a,b]是D 的子集设f(x)定义域为D,若满足; (1)f(x)在D内是单调函数;(2)存在[a,b]是D的子集使f(x)在x∈[a,b]值域为[a.b],则称f(x)为D上的闭 设f(x)定义域为D,若满足;(1)f(x)在D内是单调函数,设f(x)定义域为D,若满足;(1)f(x)在D内是单调函数;(2)存在[a,b]是D的子集使f(x)在x∈[a,b]值域为[a.b],则称f(x)为D上的闭函数.证明y=-x³为闭函数, 设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M,有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的l高调函数 若定义域为R的函数f(x)是奇函数 当X∈【0,+∞)时f(x)=|X-a2|-a2且f(x)为R上的4高调函数,那 设函数f(x)的定义域为D,若存在非零实数m使得对于任意x∈M,有x+m∈D,且f(x+m)≥f(x),则称f(x)为M上的m高调函数 若定义域为R的函数f(x)是奇函数 当X∈【0,+∞)时f(x)=|X-a2|-a2且f(x)为R上的4高调函数,那 设函数f(x)的定义域为D,若存在非零实数m,使得对于任意x∈M,(M包含于D),有(x-m)∈D且f(x-m)≤f(x),则称f(x)为M上的m度低调函数.若果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=| x- a^2 |-a^2,且f(x)为R 设函数f(x)定义域为R,若存在常数k>0,使|f(x)| 设函数f(x)的定义域为D,集合M={f(x)/存在Xo属于D,使得f(xo+1)=f(xo)+f(1)}设函数f(x)的定义域为D,集合M={f(x)/存在Xo属于D,使得f(xo+1)=f(xo)+f(1)}.(1)已知f(x)=lg(a/x2+1),且f(x)属于M,求a的取值范围(2)已知函 1.设函数f(x)的定义域为【0,1】,则函数f(x2)的定义域为--------------;函数f(根号x-2)的定义域为-------------2.只函数f(x)的定义域为【-1,1】,且函数F(x)=f(x+m)-f(x-m)的定义域存在,求实数m的取 如题,求a的取值范围设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M,有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的l高调函数,如果定义域为R的函数f(x)为奇函数,当x≥0时.f(x)=丨x-a²丨- 设函数f(x)的定义域为D,若满足①f(x)在D内是单调函数;②存在[a,b]包含于D使f(x)在[a,b]上的值域为[a,b],那么就称y=f(x)为成功函数.若函数g(x)=loga(a^2x +t)(a>0且a≠1)是定义域为R的“成功函数”,则 设函数f(x)的定义域为0= y=f(x)定义域为D,值域为B设函数f(x)的定义域为D,值域为B,如果存在函数x=g(t),使得函数y=f(g(t))的值域仍然是B,那么,称函数x=g(t)是函数f(x)的一个等值域变换.(2)设f(x)=log2(x 设f(x)定义域为D,若满足;(1)f(x)在D内是单调函数;(2)存在[a,b]是D的子集使f(x)在x∈[a,b]值域为[a.b],则称f(x)为D上的闭函数.当f(x)=2k+(x+4)^0.5为闭函数时,k的范围是—Thank you! 函数的有界性的问题设函数f(x)的定义域为D,数集I⊂D.若对任意X属于I,若果存在数K1,使得f(x)≤K1,则称函数F(x)在I上有上界,而K1则成为函数f(x)在I上的一个上界.如果存在M>0,恒有|F(x 设f(x)的定义域为R,若存在常数G>0,使/f(x)/ 设f(x)定义域为D,若满足;(1)f(x)在D内是单调函数;(2)存在[a,b]是D的子集使f(x)在x∈[a,b]值域为[a.b],则称f(x)为D上的闭函数,现有f(x)=根号下(x+2)+k是闭函数,那么k的取值范围是————求详解