(x+sinxcosx)/(cosx-xsinx)^2的不定积分是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:49:56
(x+sinxcosx)/(cosx-xsinx)^2的不定积分是
x){B83"9N} C$=dGu/_ٌ6IEd/!k3 |ԱZa& qF )`U Q9mgԋOv=:t?i}P :EO@\oϦB?@}:/];(QchMFetAj5tAlm,w!Zd~ 3f: X6yvsD

(x+sinxcosx)/(cosx-xsinx)^2的不定积分是
(x+sinxcosx)/(cosx-xsinx)^2的不定积分是

(x+sinxcosx)/(cosx-xsinx)^2的不定积分是
答:
∫(x+sinxcosx)/(cosx-xsinx)^2 dx
=cosx/(cosx-xsinx) + C
至于方法,看到分母为(cosx-xsinx)^2的形式,积分原函数分母很可能为cosx-xsinx,设分子为f(x)则:
[f(x)/(cosx-xsinx)]'
=[f'(x)(cosx-xsinx)-f(x)(-sinx-sinx-xcosx)]/(cosx-xsinx)^2
要使 f'(x)(cosx-xsinx)+f(x)(2sinx+xcosx)=x+sinxcosx
则f(x)=cosx