已知三角形ABC中,A B C依次成等差数列.且1/cosA+1/cosC=—(√2/cosB).求cos(A-C)/2的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:30:54
已知三角形ABC中,A B C依次成等差数列.且1/cosA+1/cosC=—(√2/cosB).求cos(A-C)/2的值
已知三角形ABC中,A B C依次成等差数列.且1/cosA+1/cosC=—(√2/cosB).求cos(A-C)/2的值
已知三角形ABC中,A B C依次成等差数列.且1/cosA+1/cosC=—(√2/cosB).求cos(A-C)/2的值
A B C依次成等差数列
=>2B=A+C
=>3B=180°
=>B=60°
=>A+C=120°
1/cosA +1/cosC=-√2/cosB
=>(cosA+cosC)/cosAcosC=√2cos(A+C)带入A+C=120°
=>(cosC+cosA)/cosCcosA=-2√2
=>2cos[(A+C)/2][cos(A-C)/2]=-√2[cos(A+C)+cos(A-C)]带入A+C=120°
=>
cos[(A-C)/2]=-√2[cos(A+C)+cos(A-C)]
化简cos(A-C)=2(cos[(A-C)/2])^2-1带入上式
化简全式
=>2(cos[(A-C)/2])^2 +cos[(A-C)/2] -(3√2)/2=0
把此方程看作是关于cos[(A-C)/2]的一元二次方程,可得到两个根.
cos[(A-C)/2]=(-3√2)/4
cos[(A-C)/2]=√2/2
因为A.C是锐角,(A-C)/2也是锐角,所以cos[(A-C)/2]>0
所以舍去第一个根,
所以,cos[(A-C)/2]=√2/2
A B C依次成等差数列,所以2B=A+C,3B=180°,B=60°.
①COSA+COSC=2COS[(A+C)/2]COS[(A-C)/2]=COS[(A-C)/2]
②COSACOSC=0.5[COS(A+C)+COS(A-C)]=0.5[-0.5+COS(A-C)]
③2COS[(A-C)/2]*COS[(A-C)/2]-1=COS(A-C)
1/cosA...
全部展开
A B C依次成等差数列,所以2B=A+C,3B=180°,B=60°.
①COSA+COSC=2COS[(A+C)/2]COS[(A-C)/2]=COS[(A-C)/2]
②COSACOSC=0.5[COS(A+C)+COS(A-C)]=0.5[-0.5+COS(A-C)]
③2COS[(A-C)/2]*COS[(A-C)/2]-1=COS(A-C)
1/cosA+1/cosC=—(√2/cosB),所以
④(COSA+COSC)/(COSACOSC)=-2√2
由于不晓得cos(A-C)/2到底代表COS[(A-C)/2]还是[COS(A-C)]/2,就不能再继续帮你算了,只要联立①②③④,就可算出答案
收起
角A B C依次成等差数列,所以2B=A+C,A+B+C=180 3B=180 B=60.
1/cosA+1/cosC=-√2/2
cosA+cosC=-√2/2COSACOSC
2cos{(A+C)/2}cos{(A-C)/2}=-√2{cos(A+C)+cos(A-C)}
将cos(A+C)/2=cos60=1/2 cos(A+C)=-1/2带入上式,得
全部展开
角A B C依次成等差数列,所以2B=A+C,A+B+C=180 3B=180 B=60.
1/cosA+1/cosC=-√2/2
cosA+cosC=-√2/2COSACOSC
2cos{(A+C)/2}cos{(A-C)/2}=-√2{cos(A+C)+cos(A-C)}
将cos(A+C)/2=cos60=1/2 cos(A+C)=-1/2带入上式,得
cos{(A-C)/2}=√2/2-√2cos(A-C)
cos(A-C)=2乘以{cos[(A-C)/2]}的平方-1 带入上式并整理得
4√2乘以[cos{(A-C)/2}]的平方+2cos{(A-C)/2}-3√2=0
[2cos{(A-C)/2}-√2][2√2cos{(A-C)/2}+3]=0
2√2cos{(A-C)/2}+3不等于0
2cos{(A-C)/2}-√2=0
cos{(A-C)/2}=√2/2
收起