已知向量m=(根号3sinx/4,1),向量n=(cosx/4,cos^2 x/4)记f(x)=向量m乘以向量n,在三角形ABC中,角A,B,C的对边是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:18:55
已知向量m=(根号3sinx/4,1),向量n=(cosx/4,cos^2 x/4)记f(x)=向量m乘以向量n,在三角形ABC中,角A,B,C的对边是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
xRMO0+=8Wd0N"D@b05~\R# n_'/KBk8x7]ZVIYF*D1c)YV1`5뻧h! ѳ;ߩEt|t;@fhҞMഗE9G Fԫl*?j, 9(l88bi:1-{m=.j-=hD)d7O sEڵԳ%ZSl1c! > yN՜ لIHrT 0 trb>qp$ :S'U; XTYh0Tw.&X/G,2 SY$hjs|akY)B

已知向量m=(根号3sinx/4,1),向量n=(cosx/4,cos^2 x/4)记f(x)=向量m乘以向量n,在三角形ABC中,角A,B,C的对边是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
已知向量m=(根号3sinx/4,1),向量n=(cosx/4,cos^2 x/4)
记f(x)=向量m乘以向量n,在三角形ABC中,角A,B,C的对边是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

已知向量m=(根号3sinx/4,1),向量n=(cosx/4,cos^2 x/4)记f(x)=向量m乘以向量n,在三角形ABC中,角A,B,C的对边是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
(2a-c)cosB=bcosC 由正弦定理:(2sinA-sinC)cosB=sinBcosC 2sinAcosB-sinCcosB=sinBcosC sinBcosC+sinCcosB=2sinAcosB sin(B+C)=2sinAcosB sinA=2sinAcosB 1=2cosB cosB=1/2 得B=60° f(x)=向量m乘以向量n=根号3sinx/4 cosx/4 +cos^2 x/4=√3/2* sinx/2+(1+cosx/2)/2=√3/2* sinx/2+cosx/2/2+1/2= sin(x/2+30°) +1/2所以f(A)= sin(A /2+30°) +1/2因为B=60°,所以0°