如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,则S2011=.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:01:22
如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,则S2011=.
xSN@{<~J|@'I[HJ*uE)mABi$JS%*.q*;vb(tɒ}̹zҕ)m4{i6=zR`b

如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,则S2011=.
如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,则S2011=.

如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,则S2011=.
可求出三角形ABC的面积√3/4
因为E为BC中点,DE∥AB,三角形CDE和三角形EFB的面积是三角形ABC的四分之一,所以四边形ADFE面积为三角形ABC的二分之一,
因为D1=0.5EF,S2=1/4S1,据此S3=1/4S2 S4=1/4S3、、、S2011=1/4S2010
S2011=﹙1/4﹚的2010次方×S1
因为S1=√3/8,所以S2011=√3/2×﹙1/4﹚的2011次方
注明 求四边形D1E1F1F的面积为四边形DEFA面积的1/4时,可根据高和底为它的1/2,面积就为它的1/4

如图,三角形abc是边长为3的等边三角形. 如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取 如图下图,三角形ABC是边长为1的等边三角形,BD=CD, △ABC是边长为1的等边三角形.取BC边中点E,作ED‖AB,EF‖AC如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E 如图,分别取等边三角形ABC各边的中点D、E、F,连接得△DEF.若△ABC的边长为a.如图,分别取等边三角形ABC各边的中点D、E、F,连接得△DEF.若△ABC的边长为a.(1)△DEF与△ABC相似吗?如果相似,相似比 如图,分别取等边三角形ABC各边的中点D、E、F,连接得△DEF.若△ABC的边长为a.如图,分别取等边三角形ABC各边的中点D、E、F,连接得△DEF.若△ABC的边长为a.(1)△DEF与△ABC相似吗?如果相似,相似比 如图,△ABC是边长为1的等边三角形……等等两道初二数学题? 如图,等边三角形ABC的边长为4,圆O是等边三角形ABC的内切圆,求圆O的半径 如图,三角形abc是边长为4的等边三角形,题如下图 如图,等边三角形ABC的面积为9根号3 平方厘米,求△ABC的边长 如图,△ABC是边长为a的等边三角形,D是BC边的中点,如图,△ABC是边长为a的等边三角形,D是BC边的中点,过点D分别作AB、AC的垂线,垂足为E、F.(1)计算:AD= ▲ ,EF= ▲ (用含a的式子表示);(2)求证: 如图,分别以△ABC的三边长为边长.在BC的同侧作等边三角形ABD,等边三角形BCE,等边三角形ACF,连结DE、E判断哪几个三角形与△ABC全等,并证明四边形ADEF是平行四边形. 如图,等边三角形ABC的边长是5cm.,求△ABC的周长和面积 已知:如图,三角形ABC是边长为3cm的等边三角形,动点P, 如图,已知三角形ABC是边长为6cm的等边三角形 如图,已知三角形ABC是边长为6cm的等边三角形,动点P、Q 如图,已知,等边三角形ABC的边长为1,求它的面积 如图,三角形abc边长为1的等边三角形,BD=CD,