求和:Sn=2^/1*3+4^2/3*5+……(2n)^2/(2n-1)(2n+1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:50:28
求和:Sn=2^/1*3+4^2/3*5+……(2n)^2/(2n-1)(2n+1)
x){餞{fjkkj?jXDFy@ k $ 5mӨ_`gCm ZMZ0"emS Q4LFJB<v N̓42Ҧzzz8@R&x,bg3?tΊsg>a}Y-wO~nXeMyE뷿ؿu:@OzaOf?ݱYӊ?m _(lNv/|ֲYKȤ @ u6yv(x

求和:Sn=2^/1*3+4^2/3*5+……(2n)^2/(2n-1)(2n+1)
求和:Sn=2^/1*3+4^2/3*5+……(2n)^2/(2n-1)(2n+1)

求和:Sn=2^/1*3+4^2/3*5+……(2n)^2/(2n-1)(2n+1)
(2n)^2/(2n-1)(2n+1)
=(2n)^2/[(2n)²-1]
=1+1/[(2n)²-1]
=1+1/(2n-1)(2n+1)
=1+1/2[1/(2n-1)-1/(2n+1)]
∴Sn=2^2/1*3+4^2/3*5+……(2n)^2/(2n-1)(2n+1)
=n+1/2[1-1/3+1/3-1/5+...+1/(2n-1)-1/(2n+1)]
=n+1/2[1-1/(2n+1)]
=n+n/(2n+1)
这是我在静心思考后得出的结论,
如果不能请追问,我会尽全力帮您解决的~
如果您有所不满愿意,请谅解~