1/1*2+1/3*4+1/5*6+...+1/2007*2008-1/1005-1/1006-1/1007-...-1/2008=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:41:29
x)372672Zfzzz@000Pf\H&H*PE@l$P*4
(jy鄾
^.a~g3tLqAbM6`.0iij*0 J9 S&`7>3i'ڞNX~Oϓ ޗ=똈N nz
1/1*2+1/3*4+1/5*6+...+1/2007*2008-1/1005-1/1006-1/1007-...-1/2008=?
1/1*2+1/3*4+1/5*6+...+1/2007*2008-1/1005-1/1006-1/1007-...-1/2008=?
1/1*2+1/3*4+1/5*6+...+1/2007*2008-1/1005-1/1006-1/1007-...-1/2008=?
1/3*4=1/3-1/4
1/5*6=1/5-1/6
然后逐项递减,明白?
1/1*2+1/3*4+1/5*6+...+1/2007*2008-1/1005-1/1006-1/1007-...-1/2008=(1+1/3+1/5+...+1/1003)-(1/2+1/4+1/6+...+1/1004)
会做了吧,不会再问我
巧算:(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4+1/5+1/6)-(1+1/2+1/3+1/4+1/5+1/6)*(1/2+1/3+1/4+1/5)(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4+1/5+1/6)-(1+1/2+1/3+1/4+1/5+1/6)*(1/2+1/3+1/4+1/5)=====
简算:1/1*2+1/2*3+1/3*4+1/4*5+1/5*6
1+1+1+1+11+-1-1-1-1-2-3-4-5-6等于
1-1/2+1/3-1/4+1/5-1/6+1/7.-1/50=?
1+1+1+1+1+1+1+1+1+2+5+4+8+3+6+2+1+4等于多少?
((1/2)-1)*((1/3)-1)*((1/4)-1)*((1/5)-1)*((1/6)-1)*((1/7)-1)*((1/8)-1)*((1/9)-1)*((1/10)-1)
1/1*3+1/2*4+1/3*5+1/4*6+.+1/100*102=?
1*1/2+1/2*1/3+1/3*1/4+1/4*1/5+1/5*1/6+1/6*1/7用简便方法怎么做?
1-1/2+1/3-1/4+1/5-1/6+…+1/15=23*[1/( )+1/( )+1/( )+1/( )]
1.(1+1/2+1/3+1/4)*(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4)=2.(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4+1/5+1/6)-(1+1/2+1/3+1/4+1/5+1/6)*(1/2+1/3+1/4+1/5)=
(1+1/2)*(1+1/4)*(1+1/6)*.*(1+1/20)*(1-1/3)*(1-1/5)+(1-1/7)*.*(1-1/2
1+1/2+1/3+1/4+1/5+1/6+.+1/n极限多少?
1+1+1+2+1+3+1+4+1+5+1+6
1/2+1/3+1/4+1/5+1/6+1/7+.1/20=
如何证明1+1/2+1/3+1/4+1/5+1/6+...+1/2014
2×3/1+3×4/1+4×5/1+5×6/1+.199×200/1=?
1/2*1/3+1/3*1/4+1/4*1/5+1/5*1/6 (简便方法)
1/2 + 1/6 + 1/12 + 1/20 + 1/30+ 1/42 + 1/56 + 1/72=(1+ 1/2+ 1/3+ 1/4+ 1/5)×(1/2+ 1/3+ 1/4+ 1/5+ 1/6)-(1+ 1/2+ 1/3+ 1/4+1/5+ 1/6)×(1/2+ 1/3+ 1/4+ 1/5)