用数学归纳法证明:1+1/2∧2+1/3∧2+……+1/n∧2≥(3n)/(2n+1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:56:00
用数学归纳法证明:1+1/2∧2+1/3∧2+……+1/n∧2≥(3n)/(2n+1)
xQJ@{4<- * UՃ*FLS?&t7| jE<df떓'9_^Y"l\7·-&-.sxZI: ()9pFαCyY4٤#ᗯ> Wٙe5-|y\$Iaf EXWi8a\ _CH7 dJ¨hOI(dQR?_.tYjj2 Snj(]mSm'J\NmǍvpߗ>vYWO=f\

用数学归纳法证明:1+1/2∧2+1/3∧2+……+1/n∧2≥(3n)/(2n+1)
用数学归纳法证明:1+1/2∧2+1/3∧2+……+1/n∧2≥(3n)/(2n+1)

用数学归纳法证明:1+1/2∧2+1/3∧2+……+1/n∧2≥(3n)/(2n+1)
既然是数学归纳法..应该很简单了..
当n=1时,3n/(2n+1)=1,满足;
若n=k时成立(k≥1),则1+1/2^2+1/3^2+…+1/k^2≥3k/(2k+1);
则1+1/2^2+…+1/k^2+1/(k+1)^2≥3k/(2k+1)+1/(k+1)^2;
3k/(2k+1)+1/(k+1)^2-(3k+3)/(2k+3)=(k^2+2k)/((k+1)^2*(2k+1)*(2k+3))>0,
故1+1/2^2+…+1/k^2+1/(k+1)^2>(3k+3)/(2k+3),
即n=k+1时也成立.
over.