高中立体几何三垂线定理三题!1.已知直角△ABC(B为直角顶点)所在平面外一点P,PA=PB=PC,二面角P-BC-A的平面角为θ,tanθ=2,设P到平面ABC的距离为h,求h与|AB|之比.2.已知在三棱锥A-BCD中,侧面ABD⊥底面BCD,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:53:50
高中立体几何三垂线定理三题!1.已知直角△ABC(B为直角顶点)所在平面外一点P,PA=PB=PC,二面角P-BC-A的平面角为θ,tanθ=2,设P到平面ABC的距离为h,求h与|AB|之比.2.已知在三棱锥A-BCD中,侧面ABD⊥底面BCD,
xSNA}5&FlITbd~z W(\Fa[(?" `kZ~J!WN۴+voΙ3əɶpOEX !ܜ^KVwy,;G\! ë [2rX/:{G) i˦L-av v^Tu뚳[JaiKwAz/mSna9Q_GOgbC)emf嫱?5D3r!bJ[Yv(O)Qu:m_T*D-Jج3&v6Zҙ rmiTVaoQy?VAMyٲ6}gLX' ^f}˂Ӝ A]\?t1uL&՞ōhi2k;Jժ0!fᨆ}P&ܠ`\o=цpvD݃:(jfPf`\lClnrD|ٍ->Єha4jB1Y}Op` ~qD# p(!«K;x ^Wvj;JZ7@D-փgɠ?q){1`$zQ-o U+vEV0crLzzR=_

高中立体几何三垂线定理三题!1.已知直角△ABC(B为直角顶点)所在平面外一点P,PA=PB=PC,二面角P-BC-A的平面角为θ,tanθ=2,设P到平面ABC的距离为h,求h与|AB|之比.2.已知在三棱锥A-BCD中,侧面ABD⊥底面BCD,
高中立体几何三垂线定理三题!
1.已知直角△ABC(B为直角顶点)所在平面外一点P,PA=PB=PC,二面角P-BC-A的平面角为θ,tanθ=2,设P到平面ABC的距离为h,求h与|AB|之比.
2.已知在三棱锥A-BCD中,侧面ABD⊥底面BCD,又AB=CD=a,AD=BC=2a,∠BAD=60°,E为BD中点,求二面角A-CE-B的大小
3.已知直角△ABC的两直角边AC、BC的长分别为2和3,点P为斜边上的动点,现在沿CP将△ACP折成直二面角,当A、B两点的距离等于根号7时,求二面角P-AC-B的大小

高中立体几何三垂线定理三题!1.已知直角△ABC(B为直角顶点)所在平面外一点P,PA=PB=PC,二面角P-BC-A的平面角为θ,tanθ=2,设P到平面ABC的距离为h,求h与|AB|之比.2.已知在三棱锥A-BCD中,侧面ABD⊥底面BCD,
1.等于1
过点P作平面ABC的垂线、交于一点设为D、连接AD BD CD
∵PA=PB=PC 且PD⊥平面ABC即分别⊥AB AC BC .
根据勾股定理得AD=BD=CD
∴∠BAD=∠ABD、∠DBC=∠DCB
又∵Rt△ABC
∴∠ABD+∠CBD=90°
∴∠BAD+∠DCB=90°
∴D在斜边BC上、且D为斜边中点
过D作DE⊥BC 交BC于点E
∴DE∥AB D、E为AC BD中点
∴DE=½AB
又∵PD⊥DE(PD⊥平面ABC) 且tanθ=2 即PD比DE=2
∴PD比½AB=2
即h比|AB|=1.
先答这一个吧、