2010年 amc12数学题一只青蛙连续跳3次,每次1米,角度随机.这只青蛙在3次跳跃后落在距原点1米内的概率是多少?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:52:39
2010年 amc12数学题一只青蛙连续跳3次,每次1米,角度随机.这只青蛙在3次跳跃后落在距原点1米内的概率是多少?
xUn@>![ޒF)x(<DDHɽbr/-MhҪ4M8O?77*;st.>oFcQ,)&|g[a2bG*-oM1 P?gP)Mԗ`Ȥ k-Rt>\w+YX*dB *!dwh`;̶XfPq.A4t0D~;YF5i.kQfu$|u[ԱѧlYU<$u\uZ Pш2P-Q1I1::.~k|SYFfyo@ y5dZDu%MdEfY[ͱ%aբŰn[,_54mrE*DbrnѳL$?I9?S cgJWGo-d:˨GR/Kˆ״ %WrFEܼch$ʆ(.9Tc )Abh_ |A1¤)&~_>$p`B%gCwT'גFJY!=*`Z{*".)|Ax!$ij1 юs MSnߤ[F|ZF=XgM(!tA$_"Vy8*ġx!=_ob8-9XxH 3< ^U~W^aT[ӅnKG:vQm$>a&Nw(,.H/&[cDXrzK U鯮)k@oSV{2~7=I?X0

2010年 amc12数学题一只青蛙连续跳3次,每次1米,角度随机.这只青蛙在3次跳跃后落在距原点1米内的概率是多少?
2010年 amc12数学题
一只青蛙连续跳3次,每次1米,角度随机.这只青蛙在3次跳跃后落在距原点1米内的概率是多少?

2010年 amc12数学题一只青蛙连续跳3次,每次1米,角度随机.这只青蛙在3次跳跃后落在距原点1米内的概率是多少?
这是一个几何概型.
由于第一次跳所有方向完全对称,所以对于任何方向求得的概率应该相同,因此不必考虑第一步,只需考虑第二、三步.
以出发点为原点,出发点到第一步所达点的向量作为x轴单位向量建立平面直角坐标系,则第一步所达点的坐标为(1,0).
设第二步向由x轴逆时针旋转x弧度(0≤x<2π)的方向跳出,第三步向x轴逆时针旋转y弧度(0≤y<2π)的方向跳出,则第二步所达点的坐标为(1+cos x,sin x),第三步所达点的坐标为(1+cos x+cos y,sin x+sin y)
要使青蛙跳完后离它的出发点不超过一米,应有(1+cos x+cos y)²+(sin x+sin y)²≤1,即(以下是化简过程):
1+2(cos x+cos y)+(cos x+cos y)²+(sin x+sin y)²≤1
1+2(cos x+cos y)+2(cos xcos y+sin xsin y)+2≤1
cos x+cos y+cos(x-y)+1≤0
2cos[(x+y)/2]cos[(x-y)/2]+2cos²[(x-y)/2]≤0
2cos[(x-y)/2](cos[(x+y)/2]+cos[(x-y)/2])≤0
cos[(x-y)/2]cos(x/2)cos(y/2)≤0
因为0≤x<2π,0≤y<2π,所以0≤x/2,y/2<π,-π≤(x-y)/2<π
于是……(以下的化简过程应该比较简单了,但是电脑上打出来有点累,就从略了)最后由x,y的不等关系在平面直角坐标系(这是另一个坐标系,不是先前建立的那个)中得到的区域的面积为π²,而全集{(x,y)|0≤x<2π,0≤y<2π},面积为4π²
所以概率p=1/4