•如图所示OA:OB:OC:OD=2:2:3:4; 求(S△AOD+S△OBC):(S△ABO+S△ODC)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 00:21:45
•如图所示OA:OB:OC:OD=2:2:3:4; 求(S△AOD+S△OBC):(S△ABO+S△ODC)
xn@_% *j+ccg@c{\hc )J U"ĆAVHBG!/*8NYV朹h;M{tg{;)6>n,CHA%;]]zq۬I'YmpKʂ"<|lgj%v*NBD %_A+l<-ID:z]j۔Gl*.USOYD( 2I( d*Z.TW.EPSj9D=d;"R( ״[}do3.M#[;~2I$￸|=.;~Et*ib&LbXG :PG5]M D!ZYܿl

•如图所示OA:OB:OC:OD=2:2:3:4; 求(S△AOD+S△OBC):(S△ABO+S△ODC)
•如图所示OA:OB:OC:OD=2:2:3:4; 求(S△AOD+S△OBC):(S△ABO+S△ODC)

•如图所示OA:OB:OC:OD=2:2:3:4; 求(S△AOD+S△OBC):(S△ABO+S△ODC)
不难发现,对于ΔAOB与ΔAOD来说,由于同一底边的高相等,故SΔAOB/SΔAOD=OB/OD=2/4,对于ΔCOD与ΔAOD来说,由于同一底边的高相等,故SΔCOD/SΔAOD=CO/AO=3/2,对于ΔAOB与ΔBOC来说,由于同一底边的高相等,故SΔAOB/SΔBOC=AO/CO=2/3,所以可以很容易得知,SΔAOB=1/2SΔAOD=2/3SΔBOC,SΔCOD=3/2SΔAOD=3/2 x2SΔAOB=3SΔAOB,所以可以得到(S△AOD+S△OBC):(S△ABO+S△ODC)=(2+3/2)/(1+3)=7/8