证明(K/K+1)+{1/(K+1)(K+2)}=(K+1)/K+2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 02:16:20
证明(K/K+1)+{1/(K+1)(K+2)}=(K+1)/K+2
x){ٌ> o}omCMjC} Hiڂ@#"}bِa=! cl,mXT{:m^aӎ6kԳ OvBV~O-P5,@1鄞gӷ=ߵ d ֣b X =զg_\g 닁

证明(K/K+1)+{1/(K+1)(K+2)}=(K+1)/K+2
证明(K/K+1)+{1/(K+1)(K+2)}=(K+1)/K+2

证明(K/K+1)+{1/(K+1)(K+2)}=(K+1)/K+2
证明:K/(K+1)+1/[(K+1)(K+2)] =[K(K+2)+1]/[(K+1)(K+2)] (注:通分,公分母 为[(K+1)(K+2)]) =(K+2K+1)/[(K+1)(K+2)] =(K+1)/[(K+1)(K+2)] (注:分子分母同时约分,约去(K+1) ) =(K+1)/(K+2) 即 证明了.