1/(1+3)+1/(3+5)+1/(5+7)…+1/(99+101)=( )简便计算

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 18:54:24
1/(1+3)+1/(3+5)+1/(5+7)…+1/(99+101)=( )简便计算
xPJP>n\vRR/0"MQKRgJȦ!|'_-*/}89?rFFe*s=- a 5iO摓>oE4Q>HT)JFZacuhz̟dehsAVb6}`Îz)!!%d7CĆbX^1X٣ϯ݂(10ჳ8fJ/n_A;2("TU[=ih t݅p c;g5ֶ W"rꔺcA+P[4S˚/xi

1/(1+3)+1/(3+5)+1/(5+7)…+1/(99+101)=( )简便计算
1/(1+3)+1/(3+5)+1/(5+7)…+1/(99+101)=( )简便计算

1/(1+3)+1/(3+5)+1/(5+7)…+1/(99+101)=( )简便计算
1/(1+3)+1/(3+5)+1/(5+7)…+1/(99+101)
=1/4+1/8+1/12+.+1/200
=1/4(1+1/2+1/3+...+1/50)
括号内为发散级数,无公式求解
只有近似值,结果是4.4992
是无法用分数表示的
所以原题结果为:4.4992/4=1.1248

楼下的,多谢指教,是我的失误

1/(1+3)+1/(3+5)+1/(5+7)…+1/(99+101)
=1/2(1-1/3+1/3-1/5+1/5-1/7+…+1/99-1/101)
=1/2(1-1/101)
=50/101