已知a属于r,函数f(x)=x^3-ax^2+4x.若函数f(x)无极值点,求实数a取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:32:02
已知a属于r,函数f(x)=x^3-ax^2+4x.若函数f(x)无极值点,求实数a取值范围
xN@6mCb;ثhXۓ$Bގia=nS-r^;sj8k COQf¿oe

已知a属于r,函数f(x)=x^3-ax^2+4x.若函数f(x)无极值点,求实数a取值范围
已知a属于r,函数f(x)=x^3-ax^2+4x.若函数f(x)无极值点,求实数a取值范围

已知a属于r,函数f(x)=x^3-ax^2+4x.若函数f(x)无极值点,求实数a取值范围
f'(x)=3x^2-2ax+4①,f''(x)=6x-2a②;如果f(x)无极值点,则①式无零点,或①式有零点但在零点处f''(x)为零;第一种情况:①式无零点,则△=(2a)^2-4×3×4=4a^2-48<0,即-2√3<a<2√3;第二种情况:①式有零点x=[2a±2√(a^2-12)]/6,在零点处f''(x)=6x-2a=±2√(a^2-12)=0,即a=±2√3;综上所述-2√3≦a≦2√3(毕).