tanθ/(tan^2θ+1)=60/169 求tan

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:15:47
tanθ/(tan^2θ+1)=60/169 求tan
x)+I;C_HۡmikfohflcP&H;M*PUK@$t f@`ۗطioӵӟdg>h{| o=j5 @uM55L C#M[F::9F +5=7ɎSV lΧk';?i'>A| '(uh㣎Y@Fikh CCKM#A r~qAb(

tanθ/(tan^2θ+1)=60/169 求tan
tanθ/(tan^2θ+1)=60/169 求tan

tanθ/(tan^2θ+1)=60/169 求tan
tanx/(tan^2x+1) = 60/169
60tan^2x-169tanx+60 = 0
左边十字相乘法分解因式得:
(12tanx-5)(5tanx-12)=0
tanx=5/12,或tanx=12/5
如果不用分解因式,用求根公式也是可以的:
60tan^2x-169tanx+60 = 0
tanx = [169±√(169^2-4*60*60)]/(2*60) = (169±119)/120 = 5/12,或12/5