已知a,b,c∈R,且a+b+c=2,a^2+2b^2+3c^2=4,则a的取值范围为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:23:37
已知a,b,c∈R,且a+b+c=2,a^2+2b^2+3c^2=4,则a的取值范围为
x){}Kutut<1%Q;I;H'1H( H'ٚ<혙|ViOi~:{˓l`~ \TVWV00MMD(m D] d P"QB¥D@Ų'{Xgs:_,_~Ot<7e/{n m@S!M22B2SV@b}ϴTahk"l @Wc$

已知a,b,c∈R,且a+b+c=2,a^2+2b^2+3c^2=4,则a的取值范围为
已知a,b,c∈R,且a+b+c=2,a^2+2b^2+3c^2=4,则a的取值范围为

已知a,b,c∈R,且a+b+c=2,a^2+2b^2+3c^2=4,则a的取值范围为
a^2+2b^2+3c^2 = a^2 + 2(2-a-c)^2+3c^2 = 5c^2 +(4a-8)c +(3a^2-8a+8)=4
即:5c^2 +(4a-8)c +(3a^2-8a+4)=0,
要使该式有解(a,b,c∈R),依韦达定理:(4a-8)^2-4*5*(3a^2-8a+4) >= 0
化简得: (11a-2)(a-2)