圆x^2+y^2-2x+2y-2=0上的点到坐标原点的最近的距离是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:39:02
圆x^2+y^2-2x+2y-2=0上的点到坐标原点的最近的距离是
xQNPSRJ틉&l?Hamn aBAM  ;4- N/D+ܹz;sMBO&ɳiRN4Pf?Ԡ})vOL}QoFa_>WƦ9!&lmLbi3 f9q$mj.HJt]Ã.[ A丌D8?%CieOgoz;gbk4^K;]RP@[V>*8 t# dK.LP ̱HsՖ:&lisVRM-{sH$Z|2| /ާo7A

圆x^2+y^2-2x+2y-2=0上的点到坐标原点的最近的距离是
圆x^2+y^2-2x+2y-2=0上的点到坐标原点的最近的距离是

圆x^2+y^2-2x+2y-2=0上的点到坐标原点的最近的距离是
即(x-1)²+(y+1)²=4
圆心C(1,-1),r=2
则CO的距离d=√(1²+(-1)²)=√2
所以最近距离是r-d=2-√2

圆上到坐标原点的最近的点在原点与圆心的连线上,
距离是原点与圆心之间的距离减去半径,再取绝对值。
x^2+y^2-2x+2y-2=0
x^2-2x+1+y^2+2y+1=4
(x-1)²+(y+1)²=2²
圆心为(1,-1),半径为2
所以距离是:|√[1²+(-1)²]-2|=2-√2...

全部展开

圆上到坐标原点的最近的点在原点与圆心的连线上,
距离是原点与圆心之间的距离减去半径,再取绝对值。
x^2+y^2-2x+2y-2=0
x^2-2x+1+y^2+2y+1=4
(x-1)²+(y+1)²=2²
圆心为(1,-1),半径为2
所以距离是:|√[1²+(-1)²]-2|=2-√2

收起