已知函数f(x)=logax(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:58:05
已知函数f(x)=logax(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|
xUMs@+=P&WKuڋ& i3Pjd҉iM.aOyhz*3|ϲJE|{}MH)H~ 3I1wɮ^vQjC 7DŽϕׯ(@ Һ#cD}˟41==a+RwxA-`J?{xTHp3#w8§&c| 1( O0 u뤺F:dO%dyic!nQ+T$CĭFE.ݵ'$*F ޤH{1j#\E3,u-<`>s>0Q;e#(;BuU'ϡ>d5 ׯ~ 5]QT  ۽gM}?&G$Uan>ya!2-21WKvua E$f<kgIl4k4Y1'e9g6G aL7F礭_; ~XekUPҠvsJۅ/>|nS#϶v

已知函数f(x)=logax(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|
已知函数f(x)=logax(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|

已知函数f(x)=logax(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|
分析:根据对数函数的性质进行解题,在解题过程中注意对a要分a>1时,|f(x)|=f(x)=logax在[3,+∞)上为增函数和0<a<1时f(x)|=-f(x)=-logax在[3,+∞)上为增函数两种情况进行讨论.
当a>1时,对于任意x∈[3,+∞),都有f(x)>0.
所以,|f(x)|=f(x),而f(x)=logax在[3,+∞)上为增函数,
∴对于任意x∈[3,+∞),有f(x)>=loga3.
因此,要使|f(x)|

当a>1时,对于任意x∈[3,+∞),都有f(x)>0.
所以,|f(x)|=f(x),而f(x)=logax在[3,+∞)上为增函数,
∴对于任意x∈[3,+∞),有f(x)≥loga3.
因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立.
只要loga3≥1=logaa即可,∴1<a≤3. ...

全部展开

当a>1时,对于任意x∈[3,+∞),都有f(x)>0.
所以,|f(x)|=f(x),而f(x)=logax在[3,+∞)上为增函数,
∴对于任意x∈[3,+∞),有f(x)≥loga3.
因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立.
只要loga3≥1=logaa即可,∴1<a≤3.
当0<a<1时,对于x∈[3,+∞),有f(x)<0,
∴|f(x)|=-f(x).
∵f(x)=logax在[3,+∞)上为减函数,
∴-f(x)在[3,+∞)上为增函数.
∴对于任意x∈[3,+∞)都有|f(x)|=-f(x)≥-loga3.
因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立,
只要-loga3≥1成立即可,∴loga3≤-1=loga(1/a),即1/a≤3,∴1/3≤a<1.
综上,使|f(x)|≥1对任意x∈[3,+∞)都成立的a的取值范围是:(1,3]∪[1/3,1).

收起