如图,在△ABC中,∠BAC=90°,AB=AC,点D在AC上,点E在BA的延长线上,且BD=CE,BD的延长线交CE于点F.求证:BF⊥CE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:28:30
如图,在△ABC中,∠BAC=90°,AB=AC,点D在AC上,点E在BA的延长线上,且BD=CE,BD的延长线交CE于点F.求证:BF⊥CE
xRJ@ ֭•$;7Z*$E+_]TMR-iZSB*I2M^\e==L\{0FP>FD~V N#MV]0 p0U&cZn xvQ_.u9 rtRs|醒QUI ЉZͯr'x4ʞ}p1aa8~ĭW,3*Eg0Un*BuL[o-%.^jj"N%IZGYl (Wv

如图,在△ABC中,∠BAC=90°,AB=AC,点D在AC上,点E在BA的延长线上,且BD=CE,BD的延长线交CE于点F.求证:BF⊥CE
如图,在△ABC中,∠BAC=90°,AB=AC,点D在AC上,点E在BA的延长线上,且BD=CE,BD的延长线交CE于点F.
求证:BF⊥CE

如图,在△ABC中,∠BAC=90°,AB=AC,点D在AC上,点E在BA的延长线上,且BD=CE,BD的延长线交CE于点F.求证:BF⊥CE
证明:∵∠BAC=90°,
∴∠CAE=∠BAC=90°.
在Rt△BAD和Rt△CAE中,
{BD=CE
AB=AC
∴Rt△BAD≌Rt△CAE(HL),
∴∠ABD=∠ACE,
∴∠ABD+∠ADB=∠ACE+∠CDF.
又∵∠ABD+∠ADB=90°.
∴∠ACE+∠CDF=90°,
∴∠BFC=90°,
∴BF⊥CE.

在RT△BAD和RT△CAE中
AB=AC BD=CE
所以RT△BAD全等于RT△CAE
得∠ABD=∠ACE
因为∠BDA=∠CDF(对顶角)
∠ABD+∠BDA=90°
所以∠ACE+∠CDF=90°
所以∠BFC=90°
即BF⊥CE

如图,在△ABC中,∠BAC=90°,AB=AC=a,AD是△ABC的高,求AD的长. 如图,在△ABC中,AB=AC,∠BAC=α,且60° 如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于点D,CE⊥MN于点E,求证:∠BAC=90°. 如图在Rt△abc中,∠bac=90°,∠b=60°,如图,在Rt△abc中,∠bac=90°,∠b=60°,△ab‘c’可以由△abc绕点a顺时针旋转90°得到,连接cc‘,则∠cc'b'的度数为 如图,13.3-21,在△ABC中∠C90°,∠BAC=60°如图. 如图,在△ABC中,∠ABC=90°,CD⊥AB,AF平分∠BAC,求证:∠CFE=∠CEF 如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC 如图 在△abc中 ∠bac=120° ad平分∠bac交bc于d 求证:1/ad=1/ab+1/ac 如图,已知:在Rt△ABC中,∠C=90°,BD平分∠ABC且交AC于D.若∠BAC=90°,求证:AD=BD修改∠BAC=30° 如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC中点,求点O到△ABC的三个顶点A,B,C距离的关系 如图,在△ABC中,AB=AD=DC,∠BAD=32°,求∠BAC度数 如图在△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D 已知:如图,在△ABC中,AB=AC,∠BAC=α,且60° 如图,在三角形ABC中,角BAC=90°,AB=AC=a,AD是三角形ABC的高,求AD的长. 如图,有个RT△ABC,∠BAC=90°,AB=1,将它放在直角坐标系中,使斜边BC在X轴上,直角顶点A在反比例函数Y=根号如图,有个RT△ABC,∠BAC=90°,∠ABC=30°,AB=1,将它放在直角坐标系中,使斜边BC在X轴上,直角顶点A 如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB 【1】说明:AC=AE+CD图在这儿 如图在RT△ABC中∠BAC=90°∠B=60°△AB'C'可以由△ABC绕点A顺时针旋转90°得到(点B'与点B事对应点如图在RT△ABC中∠BAC=90°∠B=60°△AB'C'可以由△ABC绕点A顺时针旋转90°得到(点B'与点B是对应点,点C 如图,在△ABC中,AB=AC,∠BAC=108°,D在AC上且BC=AB+CD,求证:BD平分∠ABC