数学递推数列,设函数f(x)=lgx,已知项数为2m+1(m是正整数)且各项均为正数的等比数列{an},若f(a1)+f(a2)+…+f(a的第2m+1项)=1,求f(a的第m+1项)的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:44:22
数学递推数列,设函数f(x)=lgx,已知项数为2m+1(m是正整数)且各项均为正数的等比数列{an},若f(a1)+f(a2)+…+f(a的第2m+1项)=1,求f(a的第m+1项)的值.
xՒJ0_e ԋfUo"S!!^n?=K_0} 99qH!kq h@ QT&Z9wMff&{Al=06&<#f= >g4LjM̏p"'N%3*KEaz[Vn_\!z*H?jߐ\ 1 6"i$EQis=F~UTKd>ZџbKc^Õ

数学递推数列,设函数f(x)=lgx,已知项数为2m+1(m是正整数)且各项均为正数的等比数列{an},若f(a1)+f(a2)+…+f(a的第2m+1项)=1,求f(a的第m+1项)的值.
数学递推数列,
设函数f(x)=lgx,已知项数为2m+1(m是正整数)且各项均为正数的等比数列{an},若f(a1)+f(a2)+…+f(a的第2m+1项)=1,求f(a的第m+1项)的值.

数学递推数列,设函数f(x)=lgx,已知项数为2m+1(m是正整数)且各项均为正数的等比数列{an},若f(a1)+f(a2)+…+f(a的第2m+1项)=1,求f(a的第m+1项)的值.
f(a1)=lga1+lgq,f(a2)=lga1+2lgq,…,f(a的第2m+1项)=lga1+(2m+1)lgq,加起来合并得:(2m+1)lga1+m(2m+1)lgq=(2m+1)(lga1+mlgq)=(2m+1)f(a的第m+1项)=1
得:1/(2m+1)
补:f(a的第m+1项) =lga1+mlgq