如图,在△ABC中,BD为AC边上的高,BD=1,BC=AD=2,沿BD将△ABD翻折,使得∠ADC=30°,得到几何体B-ACD.(1)求证:AC⊥平面BCD.(2)求二面角D-AB-C的大小的正切值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:48:53
如图,在△ABC中,BD为AC边上的高,BD=1,BC=AD=2,沿BD将△ABD翻折,使得∠ADC=30°,得到几何体B-ACD.(1)求证:AC⊥平面BCD.(2)求二面角D-AB-C的大小的正切值.
xT[oE+!UkbZ6FH<P%ҒFR4I 'cb:O =;k{iAB*!;s.ߜf:x['ǚn6s󓰳oܿel*K醪!_:GK$hy {}| Ր̟Glqpaq^i\v z~uЌr _l? 7Ӈ`4=g@% | x rP)t%BwOZM.}S{:]׫Ѵ/JRVxi渜9͎r޽Np8wAs"Ȱųd,d\u*"㈜g{DgoI{܂Cd#j Dao hI);2Ez Sj2l ܪ@E0D+-T>1'vIEEt#`YOj7ltD3"*,h1OF @&ei *^9dYH(n-Ȥ$V^hg+j _>ǫQ(Ჹרq7[f|z ̣Dih/,nSqkÓa3jGh ]Z d잻

如图,在△ABC中,BD为AC边上的高,BD=1,BC=AD=2,沿BD将△ABD翻折,使得∠ADC=30°,得到几何体B-ACD.(1)求证:AC⊥平面BCD.(2)求二面角D-AB-C的大小的正切值.
如图,在△ABC中,BD为AC边上的高,BD=1,BC=AD=2,沿BD将△ABD翻折,使得∠ADC=30°,得到几何体B-ACD.
(1)求证:AC⊥平面BCD.
(2)求二面角D-AB-C的大小的正切值.

如图,在△ABC中,BD为AC边上的高,BD=1,BC=AD=2,沿BD将△ABD翻折,使得∠ADC=30°,得到几何体B-ACD.(1)求证:AC⊥平面BCD.(2)求二面角D-AB-C的大小的正切值.

(1)在Rt三角形BCD中,用勾股定理得:CD=√3
在三角形ACD中,∠ADC=30°,AD=2,CD=√3
用余弦定理:AC^2=AD^2+CD^2-2AD*CDcos∠ADC=1
AC^2+CD^2=AD^2   

∴AC⊥CD
由题意知,BD⊥AD,BD⊥CD,且AD∩CD=D,

∴BD⊥面ACD
AC在平ACD内,

∴BD⊥AC,

而BD∩CD=D
∴AC⊥平面BCD.
(2)

在△BCD中,过D作DO⊥BC于O,则AC⊥DO,
∴DO⊥平面ABC,
在△ABC中,过O作OE⊥AB于E,连接DE,
则AB⊥平面ODE,
∴∠DEO为二面角D-AB-C的平面角,
在Rt△ABD中,∵BD=1,BC=AD=2,
∴AB=√5,DE=2√5/5

在Rt△BCD中,DO=√3/2

∴OE=√(DE²-DO²)=√5/10

tan∠DEO=DO/OE=√15

如果您认可我的回答,请点击“采纳为满意答案”,祝学习进步!


已知如图,在△ABC中,AB>AC,AD为BC边上的高,求证:AB²-AC²=BC*(BD-DC) 如图,在△ABC中,AB=AC,AC边上的高BD=10,P为BC边上任意一点,PM⊥AB,PN⊥AC,垂足为M、N,PM+PN? 如图 在△abc中 ad为bc边上的高 说明ab²减ac²等于bc乘(bd减dc) 如图,在三角形ABC中,AB等于AC,BD为AC边上的高,试探角CBD与角A之间有什么数量关系 如图,在△ABC中,AB>AC,AD是CB边上的高.求证:AB的平方;-AC的平方;=BC(BD-CD) 如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数. 如图在△ABC中,角C=角ABC=2角A,BD是AC边上的高.求角DBC 如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,则∠DBC=?急. 如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,则∠DBC=? 如图,以知在锐角三角形ABC中BD,CE分别为AC,AB边上的高如图,已知在锐角△ABC中,BD、CE分别为AC、AB边上的高,垂足分别为D、E,连接ED,M、N分别为ED、BC的中点.(1)MN与ED有什么特殊的位置关系?(2) 如图,三角形abc中,bd是ac边上的高,已知ab=8,bc=9,bd=6,则三角形abc的外接圆半径为? 如图,在△ABC中,AB=AC,BD⊥AC,那么BC²=2CA*CD吗?试说明理由.图我没法画,AB=AC,BD是AC边上的高。就这个。 如图,AD为△ABC的边上的高,求证:AB²+CD²=AC²+BD² (面积法)如图,△ABC中,AB=AC,AC边上的高BD=10,P为边上任一点,PM⊥AB,PN⊥AC于点M,N.求PM+PM的值 如图,在三角形ABC中,AB=AC,P为BC边上任意一点,PF垂直AB于F,PE垂直AC于E,如果AB边上的高BD=a,试说明PE+PF=a 如图,在三角形ABC中,AB=AC,P为BC边上任意一点,PF垂直AB于F,PE垂直AC于E,如果AB边上的高BD=a,试说明PE+PF=a 如图,在△ABC中,∠A=40°,∠ACB=104°,BD为AC边上的高,BE平分∠ABC,求∠BFC和∠EBD的度数 如图,在△ABC中,D为BC边上一点,AB/BD=AC/CD=3/2,BC=10cm,求△ABC的周长