1.已知函数f(x)=sin²ωx+√3sinωsin(ωx+π/2)(ω>0)的最小正周期为π(1)求f(x)2.已知函数f(x)=2sin(π/4x+π/4),当x属于【-6,-2/3】时,求函数y=f(x)+f(x+2)的最大值与最小值及对

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:41:48
1.已知函数f(x)=sin²ωx+√3sinωsin(ωx+π/2)(ω>0)的最小正周期为π(1)求f(x)2.已知函数f(x)=2sin(π/4x+π/4),当x属于【-6,-2/3】时,求函数y=f(x)+f(x+2)的最大值与最小值及对
xRN@~Ӧ)kRMl.jBZo?$r@x@W;HwWpŃ|ͷ̮5}ytn:[k빽ڪٖ$l؀BAx<24*"{RUk~ȲT/O JqW+v|0" QrDJ܃t#C}$cOMJ\_h{n߱8AP,ڿ"i^+˰vs،(Y^X@BUGtʘ

1.已知函数f(x)=sin²ωx+√3sinωsin(ωx+π/2)(ω>0)的最小正周期为π(1)求f(x)2.已知函数f(x)=2sin(π/4x+π/4),当x属于【-6,-2/3】时,求函数y=f(x)+f(x+2)的最大值与最小值及对
1.已知函数f(x)=sin²ωx+√3sinωsin(ωx+π/2)(ω>0)的最小正周期为π
(1)求f(x)
2.已知函数f(x)=2sin(π/4x+π/4),当x属于【-6,-2/3】时,求函数y=f(x)+f(x+2)的最大值与最小值及对应的x的值.

1.已知函数f(x)=sin²ωx+√3sinωsin(ωx+π/2)(ω>0)的最小正周期为π(1)求f(x)2.已知函数f(x)=2sin(π/4x+π/4),当x属于【-6,-2/3】时,求函数y=f(x)+f(x+2)的最大值与最小值及对
(1) f(x)=sin²ωx+√3sinωsin(ωx+π/2)
=1/2-1/2cos2wx+√3/2sin2wx
=1/2+sin(2wx-π/6)
π=2π/2w
解之:w=1
所以:f(x)=1/2+sin(2x-π/6)
(2) f(x)+f(x+2)=2sin(π/4x+π/4)+2sin(π/4x+π/2+π/4)
=2sin(π/4x+π/4)+2cos(π/4x+π/4)
=2√2cos(π/4x)
所以:f(x)+f(x+2)最大值在x=-2/3时取得;其值为-√6/3
f(x)+f(x+2)最小值在x=-6是取得;其值为-2√2.