已知0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 04:33:09
已知0
xTjA~PؘnfgvNo2$2DmAX"Ң(?DD&Vw$+xvML[r{fw7 kInO6et6Kuy߾kބ[L\.]GȎ\\b&bVq =mVDsʍ,ϒ./K꺘YIi`9]U6U"F,KncYN3֒L1uLNJ-VV 8SiQざHLt[wMձUwmJ-.T7.wS/_hhYAld$qT:$#PCUp,]'Q!*ԪEZ DCo&K CNz$+H~L%x:S jYU]v!0,PNh㬡F(4f0&?=<rk_&E҃,!7[W3"1IADzo?𧟸>w(F@A\>xwA@+K$I&6efIrPX"x*OUGNcͯM 'FAY2Db-4lTq5!dQ:NQy_}~b:6k,jWH}@ .^辩^;O Iy?:\_w=΍N ²>_۝ǿY |0D6j

已知0
已知0

已知0
(1)sinα=[2tan(α/2)] / [1+(tan α/2)^2] =4/5
cosα=[1-(tan α/2)^2] / [1+(tan α/2)^2] =3/5
sin(β-α)=±√{1 - [cos(β-α)]^2} =±2√6/5
∵0

(1)sinα=[2tan(α/2)] / [1+(tan α/2)^2] =4/5cosα=[1-(tan α/2)^2] / [1+(tan α/2)^2] =3/5sin(β-α)=±√{1 - [cos(β-α)]^2} =±2√6/5∵0<α<π/2<β<π∴sin(β-α)=2√6/5cosβ=cos[(β-α)+α]=cos(β-α)cosα - sin(β-α)sinα = (3-...

全部展开

(1)sinα=[2tan(α/2)] / [1+(tan α/2)^2] =4/5cosα=[1-(tan α/2)^2] / [1+(tan α/2)^2] =3/5sin(β-α)=±√{1 - [cos(β-α)]^2} =±2√6/5∵0<α<π/2<β<π∴sin(β-α)=2√6/5cosβ=cos[(β-α)+α]=cos(β-α)cosα - sin(β-α)sinα = (3-8√6)/25∵0<α<π/2<β<π∴β=arccos[(3-8√6)/25]=π-arccos[(-3=8√6)/25](2)用面积公式:S=1/2ab*sinC和余弦定理如下:S=(absinC)/2c^2-(a-b)^2=c^2-a^2-b^2+2ab=2ab(1-cosC)得sinC=4(1-cosC),两边平方后1-(cosC)^2=16(1-cosC)^2(1-cosC)(15+17cosC)=0cosC=-15/17 (cosC=1时C=0,舍去)sinC=8/17由a+b≥2根号(ab)得ab≤1S最大值为S=(absinC)/2≤4/17

收起

0<α<π/2<β<π,tan(α/2)=1/2,cos(β-α)=2/10 这个sinα= -1/2 β=60