证明成立:[cos(3x)-sin(3x)]/(cosx+sinx)=1-2sin(2x).

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:57:34
证明成立:[cos(3x)-sin(3x)]/(cosx+sinx)=1-2sin(2x).
x){ٌg~gVtr~qnqfThF q M="}5Ph7bHԨB*f!d*@d*@BX`1,H dsXV #0IAfW@B(@M(&@t`l$7CCKa$@:"H֎Ѝ[L >4= }TQĢG 1P

证明成立:[cos(3x)-sin(3x)]/(cosx+sinx)=1-2sin(2x).
证明成立:[cos(3x)-sin(3x)]/(cosx+sinx)=1-2sin(2x).

证明成立:[cos(3x)-sin(3x)]/(cosx+sinx)=1-2sin(2x).
cos(3x)-sin(3x)
= cos(2x+x)-sin(2x+x)
= cos2xcosx-sin2xsinx-sin2xcosx-cos2xsinx
= (cos^2x-sin^2x)cosx-2sinxcosxsinx-2sinxcosxcosx-(cos^2x-sin^2x)sinx
= cos^3x-sin^2xcosx-2sin^2xcosx-2sinxcos^2x-cos^2xsinx+sin^3x
= cos^3x+sin^3x-3cos^2xsinx-3cos^2x
= (cosx+sinx)(cos^2x-cosxsinx+sin^2x)-3cosxsinx(cosx+sinx)
= (cosx+sinx)(cos^2x-cosxsinx+sin^2x-3cosxsinx)
= (cosx+sinx)(cos^2x+sin^2x-4cosxsinx)
= (cosx+sinx)(1-2sin2x)
即:cos(3x)-sin(3x) = (cosx+sinx)(1-2sin2x)
∴[cos(3x)-sin(3x)] / (cosx+sinx) = (1-2sin2x)