证明y=arctanx/x*x+1为有界函数~

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:56:52
证明y=arctanx/x*x+1为有界函数~
xPMK@+=&9{ CAji i RPR(_f6/yC\QcvҮ=q5#]EZ;ίYQIwiYاSr:eqOM|$nJ:Me1m˄ꧦPpUDe.Aᄻ눠>LGjKe,JfqWܿEm*^Z&ߊ4A>Ύ'YSe oMU|ۨ}!z.

证明y=arctanx/x*x+1为有界函数~
证明y=arctanx/x*x+1为有界函数~

证明y=arctanx/x*x+1为有界函数~
y=arctanx/x*x+1为有界函数
因为
|arctanx|<=π/2
0<=1/x^2<=1
所以|arctanx|/x^2<=π/2
从而
|y|=|arctanx/x*x+1|<=|arctanx/x*x|+1<=π/2+1
即有界π/2+1

当x=0时,arctanx为0,其倒数∞,所以y为∞,所以无界。 两种方法,1.求出它的最大值和最小值 2.证明它可积,可积函数必定有界。 很明显它在