计算I=∫∫(x^2+y^2+z^2)ds,其中Σ为球面x^2+y^2+z^2=2az(a>0)答案是8πa^4但是我积到一半就卡住了,求大神详解%>_
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:44:15
x͒?O@ƿI3{͙Jd"J
$Qo1{]_CIyۓʤ[yl<чK@7^K3Fh]wt,^ka\uým;:T*еk\z1\")ױu;8"MzJ{߄wbͿ*T6%$FzaԘtmXVبrPAjNhi-E4W(y a%VwXq~Q[?u%Gs!8:h(4'c}Ib* ٕ{
计算I=∫∫(x^2+y^2+z^2)ds,其中Σ为球面x^2+y^2+z^2=2az(a>0)答案是8πa^4但是我积到一半就卡住了,求大神详解%>_
计算I=∫∫(x^2+y^2+z^2)ds,其中Σ为球面x^2+y^2+z^2=2az(a>0)
答案是8πa^4
但是我积到一半就卡住了,求大神详解%>_
计算I=∫∫(x^2+y^2+z^2)ds,其中Σ为球面x^2+y^2+z^2=2az(a>0)答案是8πa^4但是我积到一半就卡住了,求大神详解%>_
Σ分为两部分Σ1:z=a+√(a^2-x^2-y^2)与Σ2:z=a-√(a^2-x^2-y^2).
Σ1与Σ2在xoy面上的投影区域都是D:x^2+y^2≤a^2.
Σ1与Σ2上,dS=a/√(a^2-x^2-y^2)dxdy.
所以I=∫∫(Σ1)(x^2+y^2+z^2)dS+∫∫(Σ2)(x^2+y^2+z^2)dS
=∫∫(D) 2a×(a+√(a^2-x^2-y^2)×a/√(a^2-x^2-y^2)dxdy+∫∫(D) 2a×(a-√(a^2-x^2-y^2)×a/√(a^2-x^2-y^2)dxdy
=∫∫(D) 4a^3/√(a^2-x^2-y^2)dxdy
=∫(0到2π)dθ∫(0到a) 4a^3/√(a^2-ρ^2)ρdρ
=8πa^4.
计算I=∫∫x(1+x^2z)dydz+y(1-x^2z)dzdx+z(1-x^2z)dxdy其中∑为曲面z=√x^2+y^2(0
用球面坐标能不能解:计算三重积分I=∫∫∫(D)zdxdydz,其中D是上半球体x^2+y^2+z^2=o?
用球面坐标能不能解:计算三重积分I=∫∫∫(D)zdxdydz,其中D是上半球体x^2+y^2+z^2=o?
设∑:z=1-x^2-y^2,取上侧,利用高斯公式计算,I=∫∫(x+y^2)dydz+(x+z)dxdy.
计算∫s∫(x+y+z)dS.S:x^2+y^2+z^2=4,z>=0
三重积分计算I=∫∫∫(x+y+z)^2dv..设V:x^2+y^2+z^2
计算曲面积分I=∫∫D(x+|y|)dS,其中曲面D:|x|+|y|+|z|=1
计算(x-y-z)^2
计算I=∫T(x^2+y^2+z^2)ds其中T为曲线{x^2+y^2+z^2=a^2,x+y+z=0
计算二重积分I=∫∫(x+y)dxdy,其中D为x^2+y^2≤x+y+1
计算:x^2/(x-y)(x-z)+y^2/(y-x)(y-z)+z^2/(z-x)(z-y)
用球坐标计算三重积分I=∫∫∫z^2dv 其中图形是由x^2+y^2+z^2
计算三重积分I=∫∫∫z^2dv 其中图形是两个球体x^2+y^2+z^2
计算曲面积分 I=∫∫(S+) (x^3)dydz+(z)dzdx+(y)dxdy 其中s+为曲面x^2+y^2=4,与平面z=0,Z=1所围外侧
计算(2x+y+z)(2x-y-z),
计算(x+2y-z)(2y+z-x)
计算(x-2y+z)(z-x-2y),
(x一2y+z)(-x+2y+z)(计算)