求(3n-sin(n^2))/(2n+cos(n^2))的极限,当n趋于无限大时

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 16:19:20
求(3n-sin(n^2))/(2n+cos(n^2))的极限,当n趋于无限大时
x){I8O83O#/HSS_(O;9{>ټƗ3'<;9Ŷ'M_xdl)5BΆ*7h4TxԹ@Y6DP؈\<]G41LCc0Jt;H1 N8= -yv#

求(3n-sin(n^2))/(2n+cos(n^2))的极限,当n趋于无限大时
求(3n-sin(n^2))/(2n+cos(n^2))的极限,当n趋于无限大时

求(3n-sin(n^2))/(2n+cos(n^2))的极限,当n趋于无限大时
(3n-1)/(2n+1) ≤(3n-sin(n^2))/(2n+cos(n^2))≤ (3n +1)/(2n-1)
lim(n->∞)(3n-1)/(2n+1) ≤lim(n->∞)(3n-sin(n^2))/(2n+cos(n^2))≤ lim(n->∞)(3n +1)/(2n-1)
3/2≤lim(n->∞)(3n-sin(n^2))/(2n+cos(n^2))≤3/2
=> lim(n->∞)(3n-sin(n^2))/(2n+cos(n^2)) =3/2