1、设B是数域P上n维线性空间V的线性变换,B属于V,若B^(n-1)(a)!=0,B^n(a)=0,证明:a,B(a),B^2(a),……,B^(n-1)(a)是V的一组基,并求B在这组基下的矩阵.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:41:00
1、设B是数域P上n维线性空间V的线性变换,B属于V,若B^(n-1)(a)!=0,B^n(a)=0,证明:a,B(a),B^2(a),……,B^(n-1)(a)是V的一组基,并求B在这组基下的矩阵.
1、设B是数域P上n维线性空间V的线性变换,B属于V,若B^(n-1)(a)!=0,B^n(a)=0,证明:a,B(a),B^2(a),……,B^(n-1)(a)是V的一组基,并求B在这组基下的矩阵.1、设B是数域P上n维线性空间V的线性变换,B属于V,若B^(n-1)(a)!=0,B^n(a)=0,证明:a,B(a),B^2(a),……,B^(n-1)(a)是V的一组基,并求B在这组基下的矩阵.
证:设 k0a+k1B(a)+k2B^2(a)+……+k(n-1)B^(n-1)(a)=0 (1)
用B^(n-1)作用等式两边,因为B^n(a)=0,
故得 k0B^(n-1)(a)=0.
又因为 B^(n-1)(a)!=0,所以 k0=0.
(1)式变为
k1B(a)+k2B^2(a)+……+k(n-1)B^(n-1)(a)=0 (2)
再用B^(n-2)作用(1)式两边,
由B^n(a)=0,得 k1B^(n-1)(a)=0.
再由 B^(n-1)(a)!=0,知 k1=0.
得 k2B^2(a)+……+k(n-1)B^(n-1)(a)=0 (3)
如此下去,得 k0=k1=k2=...=k(n-1)=0.
所以 a,B(a),B^2(a),……,B^(n-1)(a) 线性无关.
又因向量组含n个向量,故为V的一组基.
B(a,B(a),B^2(a),……,B^(n-1)(a))
= (B(a),B^2(a),……,B^(n-1)(a),0)
= (a,B(a),B^2(a),……,B^(n-1)(a))*
0 0 ...0 0
1 0 ...0 0
0 1 ...0 0
......
0 0 ...1 0高等数学。
忘喽