求不定积分:∫sin[x^(1/2)]dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:23:00
求不定积分:∫sin[x^(1/2)]dx
x){Ɏާf=_iG=u.̋07ҌMI*'J~ &>Qa&xQE&u^ٖ< tO?T_ P}IJ X%)HB% 6HH ~԰ l ^s.zLJ1@fjUk*@i.Hh'TD[!Y65BAK(U6I8L¸0MV;

求不定积分:∫sin[x^(1/2)]dx
求不定积分:∫sin[x^(1/2)]dx

求不定积分:∫sin[x^(1/2)]dx
原积分=∫sin[x^(1/2)]×2x^1/2dx^1/2,
令x^1/2=t,则原式=∫sint×2tdt
=﹣2∫tdcost
=﹣2tcost+2∫costdt
=﹣2tcost+2sint+C
=…………

如下

dx = (3/2)∫ sin(2x/3) d(2x/3) = (-3/2)cos(2x/3) + c ∫ e^sinx * cosx dx = ∫ e^sinx dsinx = e^sinx + c ∫ 1/x

dx = (3/2)∫ sin(2x/3) d(2x/3) = (-3/2)cos(2x/3) + c ∫ e^sinx * cosx dx = ∫ e^sinx dsinx = e^sinx + c ∫ 1/x