求定积分下限∫-π/2到上限π/2sinx/(2+cosx)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:54:55
求定积分下限∫-π/2到上限π/2sinx/(2+cosx)dx
x){YϗdG˙u=ߠocÓ]@83B_H;9B3&H\v6o=X5TuR S:'& $@V@3"n`_\g bj7>;f" =^N [D>mdWϛv>] .';zz^- U!B\Diid!9- 5

求定积分下限∫-π/2到上限π/2sinx/(2+cosx)dx
求定积分下限∫-π/2到上限π/2sinx/(2+cosx)dx

求定积分下限∫-π/2到上限π/2sinx/(2+cosx)dx
原式=-∫-π/2到上限π/2dcosx/(2+cosx)
=-∫-π/2到上限π/2d(2+cosx)/(2+cosx)
=-ln(2+cosx)-π/2到上限π/2
=-[ln(2+0)-ln(2-0)]
=0

被积函数sinx/(2+cosx)是奇函数
积分区间[-π/2,π/2]关于原点对称,定积分为0
不定积分为:
∫ sinx/(2+cosx)dx
= -∫1/(2+cosx)d(cosx+2)
= - ln(2+cosx) + C