七、设W1和W2是n维向量空间V的两个子空间,且维数之和为n,证明:存在V上的线性变换σ,使ker(σ)=W1,Im(σ)=W2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 02:15:12
七、设W1和W2是n维向量空间V的两个子空间,且维数之和为n,证明:存在V上的线性变换σ,使ker(σ)=W1,Im(σ)=W2
xSn@~u6Vɪ(j1šUmC!IyNB^ ;;7|3+ҞMor+K]3+1:oWm|:gnų?{wwxHCbG <{Kzޅ e/&\TD|gԽђ* po ~":q=(QFZC]?T埞-V?jeb!~rq£(c Xo^l*m Rs F Aof (??5QH;aPO$h Aے!ri!8SIH*R'Ta\KE KťX FKKnM)NVJo7yR&"WEDװ}ֳKqNsift0z_!4YPN,<+:3@M;DؑYD#uz Ag2117pY^oׁ|nn!VAaj\ک

七、设W1和W2是n维向量空间V的两个子空间,且维数之和为n,证明:存在V上的线性变换σ,使ker(σ)=W1,Im(σ)=W2
七、设W1和W2是n维向量空间V的两个子空间,且维数之和为n,证明:存在V上的线性变换σ,使ker(σ)=W1,Im(σ)=W2

七、设W1和W2是n维向量空间V的两个子空间,且维数之和为n,证明:存在V上的线性变换σ,使ker(σ)=W1,Im(σ)=W2
设ε1……εr和α1……αn-r分别是W1和W2的一组基,可知ε1……εr可扩充为V的一组基,设扩充后这组基变为ε1……εn,则对于V中的任意一个元素ζ=k1ε1+……+knεn,设变换σ把它变换为η=k(r+1)α1+……+knαn-r,可知这个变换的像空间是W2,并且由于σ(β+γ)=[k1(r+1)+k2(r+1)]α1+……+(k1n+k2n)αn-r=[k1(r+1)α1+……+k1nαn-r]+[k2(r+1)α1+……+k2nαn-r]=σβ+σγ,σtφ=tk3(r+1)α1+……+tk3nαn-r=t[k3(r+1)α1+……+k3nαn-r]=tσφ,所以σ是一个线性变换,它的核子空间为k(r+1)=……=kn=0的V中元素构成的集合,即它的核子空间为W1.

且可以证w1+w2这一空间(x1+y1xn+yn)对于加法,和与标量的乘法都封闭。即可以说空间w1+w2为V的子空间,所以v一定包含w1+w2.

七、设W1和W2是n维向量空间V的两个子空间,且维数之和为n,证明:存在V上的线性变换σ,使ker(σ)=W1,Im(σ)=W2 设W1,W2是向量空间V的子空间.证明:如果V的一个子空间既包含W1又包含W2,那么它一定包含W1+W2. 高等代数线性空间与线性变换若W1,W2是n维线性空间V的两个线性子空间,dim(W1+W2)-1=dim(W1∩W2),证明W1+W2与其中的一个子空间相等,W1∩W2与另一个子空间相等. 假设W1,W2是向量空间V的子空间,W1+W2={v|v=w1+w2},w1属于W1,w2属于W2,求证W1+W2是V的子空间 w1和w2是维线性空间v的两个n-1维子空间,则w1和w2的并的最大维数是n-1,最小维数是n-2判断正误,对的证明,错的举反例. 设n是正整数,V是数域P上的一个n维线性空间,W1.W2都是V的子空间,而且它们的维数和为n,证明:存在V的线性变换A,使A的值域是W1 ,核是W2 W1和W2是V的子空间,证明1.(W1+W2)的正交补=W1正交补+W2正交补2.(W1∩W2)的正交补=W1正交补+W2正交补 设W1,W2是数域F上向量空间V的两个字空间,a,b是V的两个向量,其中a属于W2,但a不属于W1,又b不属于W2,证明:(1)对于任意k属于F,b+ka不属于W2(2)至多有一个k属于F,使得b+ka属于W1. 设W1,W2是数域F上向量空间V的两个字空间,a,b是V的两个向量,其中a属于W2,但a不属于W1,又b不属于W2,证明:(1)对于任意k属于F,b+ka不属于W2(2)至多有一个k属于F,使得b+ka属于W1. 设W是n维向量空间V中的一个子空间,且0 1.设V是一个n维向量空间,W是V的一个子空间,则dimW≤n A.错误 B.正确 证明不变子空间w1,w2的和w1+w2也是不变子空间 w1,w2是V的非平凡子空间,则存在a属于V,是a不属于w1,w2同时成立 设W1,…,Ws是有限维空间V的真子空间,则存在V的一个基,使得其中的每一个向量均不在W1,…,Ws中. 求解:两个线性子空间w1和w2,为什么w1+w2是线性子空间?谢谢大家了 判断:设向量空间V的维数是n,则V是n维向量的集合.求详解 证明:如果W1,W2,…Ws是线性空间V的s个两两不同的线形变换,那么在V中存在向量a,使W1a…Wsa也两两不同. 求证明:向量空间v内两个子空间的并集仍是v的子空间,当且仅当这两个子空间一个是另一个的子集