定义在R上的函数y=f(x),满足f(x+2)=-1/f(x),则A f(x)不是周期函数B f(x)是周期函数,且最小正周期为2C f(x)是周期函数,且最小正周期为4D f(x)是周期函数,且4是它的一个周期

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:32:35
定义在R上的函数y=f(x),满足f(x+2)=-1/f(x),则A f(x)不是周期函数B f(x)是周期函数,且最小正周期为2C f(x)是周期函数,且最小正周期为4D f(x)是周期函数,且4是它的一个周期
x){n֓Oz{MPiQl6F`3@';zXtgsC9ulN .H<ٱșx&.Ԛ5dGÓ 6IEy x5Y;a`Vwѳ @)ȣ- M` Z%;f,AO,F 16`H) f<ٽTA,`Eϧld8!&H.d

定义在R上的函数y=f(x),满足f(x+2)=-1/f(x),则A f(x)不是周期函数B f(x)是周期函数,且最小正周期为2C f(x)是周期函数,且最小正周期为4D f(x)是周期函数,且4是它的一个周期
定义在R上的函数y=f(x),满足f(x+2)=-1/f(x),则
A f(x)不是周期函数
B f(x)是周期函数,且最小正周期为2
C f(x)是周期函数,且最小正周期为4
D f(x)是周期函数,且4是它的一个周期

定义在R上的函数y=f(x),满足f(x+2)=-1/f(x),则A f(x)不是周期函数B f(x)是周期函数,且最小正周期为2C f(x)是周期函数,且最小正周期为4D f(x)是周期函数,且4是它的一个周期

f(x+2)=-1/f(x)
将x换成x+2
∴ f(x+4)=-1/f(x+2)
∴ f(x+4)=f(x)
则4是f(x)的周期.
选D

f(x)f(x+2)=-1 ①
令x=x+2 f(x+2)f(x+4)=-1 ②
由①②:f(x)f(x+2)=f(x+2)f(x+4)
f(x)=f(x+4)

定义在R上的函数y=f(x),满足f(3-x)=f(x),f'(x) 定义在R上的函数f(x)满足:f(x+y)=f(x)+f(y)且x>0时f(x) 定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy,f(1)=2 求f(3)的值 定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy,f(1)=2,则f(-3)= 已知定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)则f(x)的奇偶性 已知F(X)是定义在R上的函数满足F(X+Y)=F(X)+F(Y)+1,则F(X)+1的奇偶性如何? 已知定义在R上的函数f(x)满足f(1)=2,f'(x) 已知定义在R上的函数f(x)满足f(1)=2,f'(x) 定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性, 证明:利用f(定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性,证明:利用f(x) 定义在R上的函数f(x)满足f (x + y) = f (x) + f ( y )(x,y∈R),当x>0时,f (x)>0,判断f (x)在R的单调 定义在R上的函数f(x)对一切实数x,y满足:f(x)≠0,且f(x+y)=f(x)*f(y),且当x1求证:f(x)在x∈R上是减函数 定义在R+上的函数f(x)满足:1.对任意x,y∈R+,都有f(xy)=f(x)+f(y) 2.当x>1时,f定义在R+上的函数f(x)满足:1.对任意x,y∈R,都有f(xy)=f(x)+f(y) 2.当x>1时,f(x)>0.1.求证:f(x)在R+上是增函数2.求证:f(y/x)=f(y)-f(x 定义在R上的函数f(x)满足f(x+y)=f(x)-f(y),那么此函数的奇偶性是( ). 拜托各位了! 若定义在R上的函数满足:f(x+y)=f(x)+f(y)且x>0时,f(x) 定义在R上的函数y=f(x),满足f(3-x)=f(x),(x-3/2)f'(x) 定义在R上的函数y=f(x),满足f(4-x)=f(x),(x-2)f'(x) 定义在R上的函数y=f(x),满足f(3-x)=f(x),(x-3/2)f'(x) 定义在R上的函数y=f(x),满足f(3-x)=f(x)且(x-3/2)f(x)