若x^2+2x+y^2-8y+17=0,求x^y的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 13:22:22
若x^2+2x+y^2-8y+17=0,求x^y的值
x){ѽ"HۨB2HעR@ƦZ6I*'F~ a kThj4*uM4T(4(Tښ@M25/.H̳:y|) P)C\w=XɎ)wN{8H\%i 4 $ZԔ -n0 !o tL kPu`CPY`;Ŗ? ýc @"0/A;bL

若x^2+2x+y^2-8y+17=0,求x^y的值
若x^2+2x+y^2-8y+17=0,求x^y的值

若x^2+2x+y^2-8y+17=0,求x^y的值
x^2+2x+y^2-8y+17=0
(x+1)^2+(y-4)^2=0
x+1=0,y-4=0
x=-1,y=4
x^y=(-1)^4=1

解由x^2+2x+y^2-8y+17=0,
得x^2+2x+1+y^2-8y+16=0,
即(x+1)^2+(y-4)^2=0
即x+1=0且y-4=0
即x=-1,y=4
即x^y
=(-1)^4
=1


x²+2x+y²-8y+17=0
(x²+2x+1)+(y²-8x+16)=0
(x+1)²+(y-4)²=0
由非负性知
x+1=0,y-4=0
∴x=-1,y=4
∴x^y
=(-1)^4
=1