((3x+1)/(3+x))^(1/(x-1)) 当x趋向于1时的极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:26:23
xQj@Yf!d$?"
-X( & BK[UK>tV(hkb/%3ѕLDs9s!%"(hA,Xɍ5^u0!=O :s̙ g8ЖB^*.[߉k5w D cXW~j#܇\= +VJkwثF6 %NV;Cc]u:3Wl^8qks䭅ܫf3V/Hk0;a.]D?$52y$C`\{6U{]Hb~>b`ME@ǁۥur:'
((3x+1)/(3+x))^(1/(x-1)) 当x趋向于1时的极限
((3x+1)/(3+x))^(1/(x-1)) 当x趋向于1时的极限
((3x+1)/(3+x))^(1/(x-1)) 当x趋向于1时的极限
设 f(x) = ((3x+1)/(3+x))^(1/(x-1))
ln f(x) = 1/(x-1) * ln[(3x+1) /(x+3) ] = 1/(x-1) * ln[ 1+ 2(x-1) /(x+3) ]
当x->1 时,2(x-1) /(x+3) ->0,ln[ 1+ 2(x-1) /(x+3) ] 2(x-1) /(x+3)
lim(x->1) lnf(x)
= lim(x->1) [2(x-1) /(x+3)] /(x-1) 等价无穷小代换
= lim(x->1) 2/(x+3) = 1/2
原式 = e^(1/2) = √e
e^(-2)
((3x+1)/(3+x))^(1/(x-1)) =e^(ln((3x+1)/(3+x))/(x-1));
运用罗比达法则,e的指数部分为{(3+x)/(3x+1)}*{(3x+1)-3*(x+3)}/(x+3)^2,消去了(x-1)项,
把x=1代入得到指数部分为-2
所以为e^(-2)
*-----------------------------------------------*| 6 4 X | 8 X X | X X 5 || X X X | X X X | X 7 8 || X X X | X X X | X X X ||---------------+---------------+--------------- || X X X | X X X | 5 1 X || X X X | X 6 X | X X X || 8 X X | 3 5 X | 2 X X ||
填九宫格帮帮忙.x x 6 x x 7 x x 98 x x x 3 x 1 x x 9 x x 6 x 5 x 3 x x x 3 x x x x 1 8x x x 9 x 1 x x x2 1 x x x x 6 x x x 6 x 7 x 3 x x 1 x x 9 x 2 x x x 47 x x 8 x x 5 x x
七年级下册政治复习提纲(山东人民出版社)第五单元是 青春的脚步 青春的气息别弄错了啊!格式:X X X X X X X X X 1、X X X X X X X X X X.2、X X X X X X X X X.3、X X X X X X X X X X X.
/X-3/-/X-1/
(3x/x-1)
x-3(x-1)
| X+1 |>| X-3 |
x+3/x-1
(x +1)(x-3)
(x+3)(x-1)
|x+1|-|x-3|
(x+1)(x-3)
x+2/x+1-x+3/x+2-x+4/x+3+x+5/x+4
[x(x+1)+x平方(x-1)]+(-3x)
x{x+1}{x-1}}x-2}{x-3}-40
x^5-x^4+x^3-x^2+x-1
|x+1|-|x|+|x-2|-|-x+3|已知x+2
(X+1)X(X+2)X(X+3)=504