圆 证明:四边形相等的四边形是菱形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:54:24
圆 证明:四边形相等的四边形是菱形
xVRA~"[{)+y'»WH2D4IŤݷ TxנǶ]Xo9 }?Rވ^;ielN'2qK)) L"aC.6{` Y6uz~r7X#!w(^GLj]Q:SF$-ڈ^Fl?N:'Q %A.}K0Ɗ%D1ȡ PqxCTYAÌWVڳ+FAFaӟϚYX"1tkn WiwonV Dߴ%>SͲjƛ*n P@)B|M1ۃA [iR,59ˊ"~;0(&bT| dly_Ð&aAn'7QRǕ)9!#(E-(sJ hZF B8a^@ 'ۓdm2`]h]O:F!qPp؍LZ(!і!9)O34fɓH?Y,Wd,Fr ]E5vfgkΟ4f^u4z@r:7JvcFϨg|Vͮ,"<#(MoV,~B3/=b ~ ^ BT%ezz uAi[(31\Z Mh]%70nc/l[d)8s@Cݱ:m/Q`Eʷ$]hwK!}ygܘ}+Н ݚy{pI-B5'R;0-BÝ:Wo۟߾CwxI_C>h\?

圆 证明:四边形相等的四边形是菱形
圆 证明:四边形相等的四边形是菱形

圆 证明:四边形相等的四边形是菱形
两组对边分别相等的四边形是平行四边形
两组对边分别平行的四边形是平行四边形
两组对角分别相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
对角线互相平分的四边形是平行四边形
菱形是四边相等的四边形,属於特殊的平行四边形,除了这些图形的性质之外,它还具有以下性质:
对角线互相垂直平分;
四条边都相等;
对角相等,邻角互补;
每条对角线平分一组对角.
判定:
一组邻边相等的平行四边形是菱形
对角线互相垂直的平行四边形是菱形
四边相等的四边形是菱形
依次连接四边形各边中点所得的四边形称为中点四边形.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形.菱形的中点四边形是矩形.
菱形面积:对角线相乘后除二或边长乘高;
菱形周界为边长的四倍:
顺次连接菱形各边中点 为矩形
正方形是特殊的菱形
梯形是指一组对边平行而另一组对边不平行的四边形.平行的两边叫做梯形的底,其中长边叫下底;不平行的两边叫腰;两底间的距离叫梯形的高.一腰垂直于底的梯形叫直角梯形,两腰相等的梯形叫等腰梯形.
梯形的性质及判定:
一组对边平行且另一组对边不平行的四边形是梯形,但要判断另一组对边不平行比较困难,一般用一组对边平行且不相等的四边形是梯形来判断.
梯形的体积计算公式:
V=〔S1+S2+开根号(S1*S2)〕/3*H
注:V:体积;S1:上表面积;S2:下表面积;H:高.
梯形的面积公式是:“上底加下底 乘以高 除以2”.
矩形:有一个角是直角的平行四边形叫做矩形,也就是长方形.
矩形有以下性质:
1.矩形的四个叫都是直角
2.矩形的对角线相等且互相平分

依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形。
菱形面积:对角线相乘后除二或边长乘高;
菱形周界为边长的四倍:
顺次连接菱形各边中点 为矩形
正两组对边分别相等的四边形是平行四边形
两组对边分别平行的四边形是平行四边形
两组对角分别相等的四边形是平行...

全部展开

依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形。
菱形面积:对角线相乘后除二或边长乘高;
菱形周界为边长的四倍:
顺次连接菱形各边中点 为矩形
正两组对边分别相等的四边形是平行四边形
两组对边分别平行的四边形是平行四边形
两组对角分别相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
对角线互相平分的四边形是平行四边形
菱形是四边相等的四边形,属於特殊的平行四边形,除了这些图形的性质之外,它还具有以下性质:
对角线互相垂直平分;
四条边都相等;
对角相等,邻角互补;
每条对角线平分一组对角.
判定:
一组邻边相等的平行四边形是菱形
对角线互相垂直的平行四边形是菱形
四边相等的四边形是菱形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形。
菱形面积:对角线相乘后除二或边长乘高;
菱形周界为边长的四倍:
顺次连接菱形各边中点 为矩形
正方形是特殊的菱形
梯形是指一组对边平行而另一组对边不平行的四边形。平行的两边叫做梯形的底,其中长边叫下底;不平行的两边叫腰;两底间的距离叫梯形的高。一腰垂直于底的梯形叫直角梯形,两腰相等的梯形叫等腰梯形。 方形是特殊的菱形

收起