幂级数的和函数的问题S(x)=∑(n+1)x^n两边取积分:∫S(x)dx=∑∫(n+1)x^ndx=∑∫dx^(n+1)=∑x^(n+1)【3】=x/(1-x)【4】两边再微分得:S(x)=1/(1-x)^2第三步到第四步是怎么一回事,请高手详细讲解下】

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:34:06
幂级数的和函数的问题S(x)=∑(n+1)x^n两边取积分:∫S(x)dx=∑∫(n+1)x^ndx=∑∫dx^(n+1)=∑x^(n+1)【3】=x/(1-x)【4】两边再微分得:S(x)=1/(1-x)^2第三步到第四步是怎么一回事,请高手详细讲解下】
xN@_#)x,wgB AJF| тtś&3̿$:+vxex^|d>~yԼvy-9*Z-Z%n&aĄM="⦋}x1B٤fju0]ǘ hO )g4lY:7953x&(/=_hnx%ӗ9!CR"Ӈab\PeL;HA3ddifFcpt]-t*{s^NӜ#+갿 #*Nw!ܛKv3HA=^݄3'i="Y†'~ p*6ʏ,f6p۠wR^I

幂级数的和函数的问题S(x)=∑(n+1)x^n两边取积分:∫S(x)dx=∑∫(n+1)x^ndx=∑∫dx^(n+1)=∑x^(n+1)【3】=x/(1-x)【4】两边再微分得:S(x)=1/(1-x)^2第三步到第四步是怎么一回事,请高手详细讲解下】
幂级数的和函数的问题
S(x)=∑(n+1)x^n
两边取积分:
∫S(x)dx=∑∫(n+1)x^ndx
=∑∫dx^(n+1)
=∑x^(n+1)【3】
=x/(1-x)【4】
两边再微分得:
S(x)=1/(1-x)^2
第三步到第四步是怎么一回事,请高手详细讲解下】

幂级数的和函数的问题S(x)=∑(n+1)x^n两边取积分:∫S(x)dx=∑∫(n+1)x^ndx=∑∫dx^(n+1)=∑x^(n+1)【3】=x/(1-x)【4】两边再微分得:S(x)=1/(1-x)^2第三步到第四步是怎么一回事,请高手详细讲解下】
第3步得到的是一个几何级数(等比数列),直接求和,就是这样
收敛半径是|x|<1
∴等比数列求和的时候1-x^(n+1)这一项省去了

1/1-x=1+x+x^2+x^3...基础公式,看好范围再用