设f(x)=(1-X)tan兀x/2,X∈(0,1],补充定义f(1)=___时,可使f(X)在[0,1]上连续.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:01:28
x){n_FnfIbֆ
}#G::/.}tݬ';;45mMߦ4"4Y
RdG^gTO#lhꧽ_i JV>ݾ"`r2s*tu@ #UrFA]KP<l[_ۇKPS_C789Q n~A~qAb( tɘ
设f(x)=(1-X)tan兀x/2,X∈(0,1],补充定义f(1)=___时,可使f(X)在[0,1]上连续.
设f(x)=(1-X)tan兀x/2,X∈(0,1],补充定义f(1)=___时,可使f(X)在[0,1]上连续.
设f(x)=(1-X)tan兀x/2,X∈(0,1],补充定义f(1)=___时,可使f(X)在[0,1]上连续.
即需在x=1左连续
即
f(1)=lim x->1- f(x)
=lim x->1- (1-x)tan(pi*x/2)
=lim x->1- (1-x)/cot(pi*x/2)
0/0型,洛必达
=lim x->1- (-1)/(-csc^2(pi*x/2)*pi/2)
=2/pi