设f(x)=(1-X)tan兀x/2,X∈(0,1],补充定义f(1)=___时,可使f(X)在[0,1]上连续.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:01:28
设f(x)=(1-X)tan兀x/2,X∈(0,1],补充定义f(1)=___时,可使f(X)在[0,1]上连续.
x){n_FnfIbֆ }#G::/.}tݬ';;4 5mMߦ4"4Y RdG׋^gTO# lhꧽ_iJV>ݾ "`r2s*t u@#UrFA]KP<׭l[_ۇKPS_C789Q n~A~qAb(tɘ

设f(x)=(1-X)tan兀x/2,X∈(0,1],补充定义f(1)=___时,可使f(X)在[0,1]上连续.
设f(x)=(1-X)tan兀x/2,X∈(0,1],补充定义f(1)=___时,可使f(X)在[0,1]上连续.

设f(x)=(1-X)tan兀x/2,X∈(0,1],补充定义f(1)=___时,可使f(X)在[0,1]上连续.
即需在x=1左连续

f(1)=lim x->1- f(x)
=lim x->1- (1-x)tan(pi*x/2)
=lim x->1- (1-x)/cot(pi*x/2)
0/0型,洛必达
=lim x->1- (-1)/(-csc^2(pi*x/2)*pi/2)
=2/pi