这一题怎么证明!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 13:59:48
这一题怎么证明!
xn@_%D*JTŻ/ĕA@S!q VAJK *ɺWq*w|X=+nfYuG;͵+.*]m(`q!'(fsђv;4Ah[Y3Dk=h>krxj.( &0 uml) 0.&-}"rr Ón& 1n9{q0ʑiR,6&)$P8W@S5aD% %PĎ411&,L nS"~yoSzs@-.)q nXF1hJXJE$,GX`+B_ūzAoolMJYrlr'k4k4/'qگzbs^OArq/ld0, z𨯿>׃Lm~qJv{MəIg^{?gC.gnjY/>T/ 

这一题怎么证明!
这一题怎么证明!
 

这一题怎么证明!

(a^2-b^2)/c^2=(a+b/c)(a-b/c)
根据正弦定理:
(a+b/c)(a-b/c)
=(sinA+sinB/sinC)(sinA-sinB/sinC)
分别处理,用和化为积公式:
sinA+sinB/sinC=2sin(A+B/2)cos(A-B/2)/sin(A+B)
=2sin(A+B/2)cos(A-B/2)/2...

全部展开

(a^2-b^2)/c^2=(a+b/c)(a-b/c)
根据正弦定理:
(a+b/c)(a-b/c)
=(sinA+sinB/sinC)(sinA-sinB/sinC)
分别处理,用和化为积公式:
sinA+sinB/sinC=2sin(A+B/2)cos(A-B/2)/sin(A+B)
=2sin(A+B/2)cos(A-B/2)/2sin(A+B/2)cos(A+B/2)
=cos(A-B/2)/cos(A+B/2)
同理:a-b/c=sin(A-B/2)/sin(A+B/2)
所以原式=sin(A-B/2)cos(A-B/2)/sin(A+B/2)cos(A+B/2)
=sin(A-B)/sin(A+B)=sin(A-B)/sinC

收起