已知数列an满足an=1+2+...n,且(1/a1)+(1/a2)+...(1/an)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:09:44
已知数列an满足an=1+2+...n,且(1/a1)+(1/a2)+...(1/an)
xPJ@~w&ˎy@<{/PB"bA^`Pv??^_ARGX-˿n`M

已知数列an满足an=1+2+...n,且(1/a1)+(1/a2)+...(1/an)
已知数列an满足an=1+2+...n,且(1/a1)+(1/a2)+...(1/an)

已知数列an满足an=1+2+...n,且(1/a1)+(1/a2)+...(1/an)
an=1/[n(n+1)]=1/n-1/(n+1)
(1/a1)+(1/a2)+...(1/an)1-1/2+1/2-1/3+...+1/n-1/(n+1)1-1/(n+1)m≥1

an=((1+n)n)/2,1/an=2/((n+1)n)=2(1/n-1/(n+1)
1/a1+1/a2+...+1/an=2(1-1/2+1/2-1/3+1/3-1/4...+1/n-1/(n+1))=2(1-1/(n+1))=2n/(n+1)=((2(n+1)-2)/(n+1)=2-2/(n+1) n大于等于1,所以上式恒小于2,所以M大于等于2.

首先求an的通项公式,an=((1+n)n)/2,1/an=2/((n+1)n)=2(1/n-1/(n+1)
1/a1+1/a2+...+1/an=2(1-1/2+1/2-1/3+1/3-1/4...+1/n-1/(n+1))=2(1-1/(n+1)) n大于等于1,所以上式恒小于2,所以M大于等于2.