线性代数中的线性变换将一个三维向量乘上3阶方阵是线性变换,不能平移,原因是零向量乘上方阵后仍是零向量,请问怎么理解?为什么零向量保持不变就说明不能平移?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:43:36
线性代数中的线性变换将一个三维向量乘上3阶方阵是线性变换,不能平移,原因是零向量乘上方阵后仍是零向量,请问怎么理解?为什么零向量保持不变就说明不能平移?
xRNA6B[Ue4ʢF؟y{w",jY=TwUT,Sm-^y bytJH~S#^({m'c)ȣEj5BT}l׭d-o UM &YQv+d  Rދtܶ^|0yVtMV(erz#G}]O:ϙ@${¬]Xd)dsEz$];ÆO.z [HG5>8Bε@t<&3(kD^W/۳FGKrའ E;o5 t1cW]D֭ix4F~t2C`_tPh¬qPK 0dl"ݸk"G

线性代数中的线性变换将一个三维向量乘上3阶方阵是线性变换,不能平移,原因是零向量乘上方阵后仍是零向量,请问怎么理解?为什么零向量保持不变就说明不能平移?
线性代数中的线性变换
将一个三维向量乘上3阶方阵是线性变换,不能平移,原因是零向量乘上方阵后仍是零向量,请问怎么理解?为什么零向量保持不变就说明不能平移?

线性代数中的线性变换将一个三维向量乘上3阶方阵是线性变换,不能平移,原因是零向量乘上方阵后仍是零向量,请问怎么理解?为什么零向量保持不变就说明不能平移?
很简单,因为线性变换满足线性性质,所以零向量经过任何一个线性变换后都必然还是零向量.
设f()为线性变换,那么
f(0向量)=f(0向量+0向量)=f(0向量)+f(0向量),
所以 f(0向量)=0向量.
而平移就是将一个向量加上一个非零向量,所以零向量在变换下保持不变就说明此变换不是平移.
附注:在线性代数课本中已经证明在取定线性空间中基的情况下,线性变换可以看作是向量与方阵的乘积.

线性代数中的线性变换将一个三维向量乘上3阶方阵是线性变换,不能平移,原因是零向量乘上方阵后仍是零向量,请问怎么理解?为什么零向量保持不变就说明不能平移? (线性代数)“可逆线性变换”中的可逆是什么意思?跟逆矩阵的逆不是一个意思吧? 是否存在一个线性变换将线性无关的向量组变成线性相关的向量组 线性代数及其应用这本书里面的.为什么不能进行R²→R³的变换呢?=Ax中的A矩阵有三行两列,乘以一个二维的向量,完全可以将其变换为三维向量啊... 线性代数中的线性变换问题判断 错 求理由 线性代数中a1,a2,a3三个三维向量可以表示任意一个三维向量,条件是a1,a2,a3线性无关,为什么呢? 线性代数的线性变换 线性代数填空题,求三维向量组的秩,/> 一个线性代数问题的理解如图,这个线性变换是怎么回事呢?以及具体什么叫线性变换呢? 一道线性变换一个3 X 3 矩阵表示一个旋转变换,如何求旋转角度,和轴的向量表示? 线性代数,向量问题(3) 线性代数中的行向量,列向量的问题.1.请问高中学的向量和线性代数中的向量一样吗?为什么线性代数中的只是一个数组,没有方向啊?2.我的意思是比如A=(1,2,3)可以理解成3维空间的xyz坐标,那 证明:三维行向量空间R⌃3 中的向量集合V={(x,y,z)|x+y+z=0}是向量空间,求它的维数和一个基 线性代数:如果把矩阵看成是一个线性变换.那么其特征向量代表了什么含义? 线性变换T在基下的矩阵怎么求,三维线性空间中的一个基α=(-1,1,1)β=(1,0,-1)γ=(0,1,1),已知线性变换T=(x,y,z)=(2x-y,y+z,x).求T在此基下的坐标.挺简单可我就是不会做. 什么是向量空间,什么是线性变换? 线性代数证明作业 限维的子空间线性代数证明作业先证明一个有限维的子空间W,向量空间V也是有限维.此外,再证明当且仅当W=V,时dim(W)= dim(V),(举例来说,俺们课上老师说,R^3的三维子空 线性代数,已知α,β,γ为三维列向量,行列式D=|α β γ|=2,则行列式 |3β γ α+β|=这个怎么算?