△ABC,求证sinA+sinB+SINc=4cosA/2*cosB/2*cosC/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:35:39
△ABC,求证sinA+sinB+SINc=4cosA/2*cosB/2*cosC/2
x){4mγM/7g9j '`Od[bG}#- lХ_`gCm@,dkdjh8j;iiٺ`6X* 5ouƮ(lFUWd * GINpLЅ$فBt@5

△ABC,求证sinA+sinB+SINc=4cosA/2*cosB/2*cosC/2
△ABC,求证sinA+sinB+SINc=4cosA/2*cosB/2*cosC/2

△ABC,求证sinA+sinB+SINc=4cosA/2*cosB/2*cosC/2
sinA+sinB+sinC
=2sin((A+B)/2)cos((A-B)/2)+2sin(C/2)cos(C/2)
=2sin((π-C)/2)cos((A-B)/2)+2sin(π-(A+B)/2)cos(C/2)
=2cos(C/2)cos((A-B)/2)+2cos((A+B)/2)cos(C/2)
=2cos(C/2)(cos((A-B)/2)+cos((A+B)/2))
=2cos(C/2)2cos(A/2)cos(B/2)
=4cos(A/2)cos(B/2)cos(C/2)