三角形ABC中,b=cosC且三角形ABC最大边长为12,最小角的正弦值为1/31.判断三角形形状2.求三角形面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:27:09
三角形ABC中,b=cosC且三角形ABC最大边长为12,最小角的正弦值为1/31.判断三角形形状2.求三角形面积
x͒KNPPy1P\elDAQ)#܃޶#m)7F&&7wH:MKt|,Me%3tDԕ̼ЦJ[%<;H!QRN8]\p 3ں4'0HW&?pl",V'X({-@?]wbBw4.A 0BEgH0@>ol[p>q-ۓM

三角形ABC中,b=cosC且三角形ABC最大边长为12,最小角的正弦值为1/31.判断三角形形状2.求三角形面积
三角形ABC中,b=cosC且三角形ABC最大边长为12,最小角的正弦值为1/3
1.判断三角形形状
2.求三角形面积

三角形ABC中,b=cosC且三角形ABC最大边长为12,最小角的正弦值为1/31.判断三角形形状2.求三角形面积
本题应为:
在三角形ABC中,sinB=sinA*cosC,最大边长12,最小角的正弦值是1/3
1、判断其三角形的形状
2、求其面积

1、因为sinB=sin(π-A-C)=sin(A+C)=sinAcosC+sinCcosA=sinAcosC
所以 sinCcosA=0
因为三角形中各角正弦恒正
所以 cosA=0 即A=90度
所以直角三角形
2、最大边长也就是斜边a 是12
不妨设 B角是最小角
则b=a*sinB=12*(1/3)=4
由勾股定理得
c=8√2
所以 S=bc/2=16√2

此题出错了。。。