三角形ABC中,b^2=ac,cosB=3/4.(1)求1/tanA+1/tanC;(2)设向量BA×向量BC=3/2,求a+c.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:33:10
xSj@A $hYeK&^(-k}j%iHkpJiڒ4d_d@(fޛyjQo~vt4DƅDi'[t;:D+۞_.^m"0xaK܈,ᴛŋatqr
@'ɏQ$BRz҄K_0\[Lĥsp/HU' N ؒ3|N5O{KfKp:؈ʄK3URjaZIB9n`[gj[8%
)%#_RH8PW$XثVלfx:alnvuà
Uܞ!!KdSjI۾s
̴ ]Y _'{
=h_S茂sںMU':mj?7bì
三角形ABC中,b^2=ac,cosB=3/4.(1)求1/tanA+1/tanC;(2)设向量BA×向量BC=3/2,求a+c.
三角形ABC中,b^2=ac,cosB=3/4.(1)求1/tanA+1/tanC;
(2)设向量BA×向量BC=3/2,求a+c.
三角形ABC中,b^2=ac,cosB=3/4.(1)求1/tanA+1/tanC;(2)设向量BA×向量BC=3/2,求a+c.
郭敦顒回答:
∵在△ABC中,b²=ac,cosB=3/4,
∴∠B=41.4096°,
cosB=3/4=(a²+c²-b²)/2ac
a²+c²-b²=(3/2)ac
a²-(5/2)ac+c²=0,a=[(5/4)-3/4] c,a=c/2
a=1时,c=2,b=√2
按正弦定理:a/sinA =c/sinC=b/sinB
1/sinA =2/sinC=√2 /sin41.4096°=2.13809,
sinA=0.467707,∠A=27.8856°,
∠C=180°-41.4096°-27.8856°=110.7048°,
(1)1/ tanA+1/ tanC=1.1339-0.378=0 .7559
(2)设向量BA×向量BC=3/2,求a+c.
应表示为设向量BA•向量BC=3/2,求a+c.
|BA||BC| cosB=3/2,accosB=3/2
∵b²=ac,cosB=3/4,∠B=
∴ac×3/4=3/2,ac=1/2,
又∵a:c=1:2,c=2a,∴2a²=1/2,a²=1/4,
∴a=1/2,c=2a=1,
∴a+c=1/2+1=3/2.