a、b、c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:53:06
a、b、c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc
xN@_KJMpU($37@KZ &Đ Յ) i t ]Lsg|:l59Q]Pw>Y;r"\vq3K!n T***sʸMMױprLXnV;^Ϋt^?lW%!rLMQb~{ (ޓ?? 9{|dԃ 98M|bꍀYr4V$B%ҋcʎ%08P9yѰD_Fϒkr`mvZ-S*٫bLi*0g1(M V

a、b、c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc
a、b、c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc

a、b、c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc
a(b^2+c^2)≥a*2bc=2abc,b(c^2+a^2)≥b*2ac=2abc,c(a^2+b^2)≥c*2ab=2abc,则三式相加得 a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)≥6abc 又a、b、c是不全相等的正数,故等号不能取到.

证明:由题意可知
原式=a(b2+c2)+b(a2+c2)+c(a2+b2)
≥a·2bc+b·2ac+c·2ab
≥6abc
又a、b、c不全相等,则等号不成立。
故原式得证。
此题旨在考察:a2+b2>2ab(a≠b)