a、b、c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:53:06
xN@_KJMpU($37@KZ&Đ
Յ)
i t]Lsg|:l59Q]Pw>Y;r"\vq3K!n
T***sʸMMױprLXnV;^Ϋt^?lW%!rLMQb~{
(ޓ??9{|dԃ
98M|bꍀYr4V$B%ҋcʎ%08P9yѰD_Fϒkr`mvZ-S* ٫bLi*0g1(M
V
a、b、c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc
a、b、c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc
a、b、c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc
a(b^2+c^2)≥a*2bc=2abc,b(c^2+a^2)≥b*2ac=2abc,c(a^2+b^2)≥c*2ab=2abc,则三式相加得 a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)≥6abc 又a、b、c是不全相等的正数,故等号不能取到.
证明:由题意可知
原式=a(b2+c2)+b(a2+c2)+c(a2+b2)
≥a·2bc+b·2ac+c·2ab
≥6abc
又a、b、c不全相等,则等号不成立。
故原式得证。
此题旨在考察:a2+b2>2ab(a≠b)
设a,b,c是不全相等的正数,求证(a+b)(b+c)(c+a)>8abc
已知a,b,c是不全相等的正数求证(a+b)(b+c)(c+a)>8abc
已知abc是三个不全相等的正数,求证:(b+c)/a+(a+c)/b+(a+b)/c
a,b,c是不全相等的正数,求证ab/c+bc/a+ac/b>a+b+c
已知a,b,c是不全相等的正数,求证:lga+lgb+lgc
a,b,c是不全相等的正数,求证(a^2+1)(b^2+1)(c^2+1)>8abc
设a,b,c是不全相等的正数,求证:a+b+c>√ab+√bc+√ac
a,b,c是不全相等的正数,且a+b+c=1,求证:ab+bc+ca
已知a,b,c是不全相等的正数,求证(b+c-a)/a + (c+a-b)/b + (a+b-c)/c >3
已知a,b,c是不全相等的正数,求证(b+c-a)/a + (c+a-b)/b + (a+b-c)/c >3
已知abc是不全相等的正数,求证a(b^b+c^c)+b(c^c+a^a)+c(a^a+B^B)>6ABC
已知a,b,c是不全相等的正数,求证:a(b^2+c^2)+b(a^2+b^2)+c(a^2+b^2)>6abc
已知a,b,c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc
a、b、c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc
已知a,b,c是不全相等的正数,求证a(b平方+c平方)+b(a平方+c平方)+c(a平方+b平方)>6abc
已知 a,b,c是不全相等的正数.求证2(aaa+bbb+ccc)>aa(b+c)+bb(a+c)+cc(a+b)
以知a,b,c是不全相等的正数,求证 2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)
abc是不全相等的正数,求证a(b平方+c平方)+b(c平方+a平方)+c(a平方+b平方)大于6abc